My Project
Macros | Functions
p_polys.h File Reference
#include "misc/mylimits.h"
#include "misc/intvec.h"
#include "coeffs/coeffs.h"
#include "polys/monomials/monomials.h"
#include "polys/monomials/ring.h"
#include "polys/templates/p_MemAdd.h"
#include "polys/templates/p_MemCmp.h"
#include "polys/templates/p_Procs.h"
#include "polys/sbuckets.h"
#include "polys/nc/nc.h"

Go to the source code of this file.

Macros

#define pIfThen(cond, check)   do {if (cond) {check;}} while (0)
 
#define p_Test(p, r)   _p_Test(p, r, PDEBUG)
 
#define p_LmTest(p, r)   _p_LmTest(p, r, PDEBUG)
 
#define pp_Test(p, lmRing, tailRing)   _pp_Test(p, lmRing, tailRing, PDEBUG)
 
#define p_SetmComp   p_Setm
 
#define __p_Mult_nn(p, n, r)   r->p_Procs->p_Mult_nn(p, n, r)
 
#define __pp_Mult_nn(p, n, r)   r->p_Procs->pp_Mult_nn(p, n, r)
 
#define _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
 
#define pDivAssume(x)   do {} while (0)
 
#define p_LmCmpAction(p, q, r, actionE, actionG, actionS)    _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
 
#define p_LmEqual(p1, p2, r)   p_ExpVectorEqual(p1, p2, r)
 

Functions

poly p_Farey (poly p, number N, const ring r)
 
poly p_ChineseRemainder (poly *xx, number *x, number *q, int rl, CFArray &inv_cache, const ring R)
 
unsigned long p_GetShortExpVector (const poly a, const ring r)
 
unsigned long p_GetShortExpVector (const poly p, const poly pp, const ring r)
 p_GetShortExpVector of p * pp More...
 
BOOLEAN p_DivisibleByRingCase (poly f, poly g, const ring r)
 divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account More...
 
poly p_One (const ring r)
 
int p_MinDeg (poly p, intvec *w, const ring R)
 
long p_DegW (poly p, const int *w, const ring R)
 
BOOLEAN p_OneComp (poly p, const ring r)
 return TRUE if all monoms have the same component More...
 
int p_IsPurePower (const poly p, const ring r)
 return i, if head depends only on var(i) More...
 
int p_IsUnivariate (poly p, const ring r)
 return i, if poly depends only on var(i) More...
 
int p_GetVariables (poly p, int *e, const ring r)
 set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0) More...
 
poly p_ISet (long i, const ring r)
 returns the poly representing the integer i More...
 
poly p_NSet (number n, const ring r)
 returns the poly representing the number n, destroys n More...
 
void p_Vec2Polys (poly v, poly **p, int *len, const ring r)
 
poly p_Vec2Poly (poly v, int k, const ring r)
 
void p_Vec2Array (poly v, poly *p, int len, const ring r)
 julia: vector to already allocated array (len=p_MaxComp(v,r)) More...
 
void p_ShallowDelete (poly *p, const ring r)
 
poly p_Sub (poly a, poly b, const ring r)
 
poly p_Power (poly p, int i, const ring r)
 
BOOLEAN pIsMonomOf (poly p, poly m)
 
BOOLEAN pHaveCommonMonoms (poly p, poly q)
 
BOOLEAN p_LmCheckIsFromRing (poly p, ring r)
 
BOOLEAN p_LmCheckPolyRing (poly p, ring r)
 
BOOLEAN p_CheckIsFromRing (poly p, ring r)
 
BOOLEAN p_CheckPolyRing (poly p, ring r)
 
BOOLEAN p_CheckRing (ring r)
 
BOOLEAN _p_Test (poly p, ring r, int level)
 
BOOLEAN _p_LmTest (poly p, ring r, int level)
 
BOOLEAN _pp_Test (poly p, ring lmRing, ring tailRing, int level)
 
static unsigned pLength (poly a)
 
poly p_Last (const poly a, int &l, const ring r)
 
void p_Norm (poly p1, const ring r)
 
void p_Normalize (poly p, const ring r)
 
void p_ProjectiveUnique (poly p, const ring r)
 
void p_ContentForGB (poly p, const ring r)
 
void p_Content (poly p, const ring r)
 
void p_Content_n (poly p, number &c, const ring r)
 
void p_SimpleContent (poly p, int s, const ring r)
 
number p_InitContent (poly ph, const ring r)
 
poly p_Cleardenom (poly p, const ring r)
 
void p_Cleardenom_n (poly p, const ring r, number &c)
 
int p_Size (poly p, const ring r)
 
poly p_Homogen (poly p, int varnum, const ring r)
 
BOOLEAN p_IsHomogeneous (poly p, const ring r)
 
static void p_Setm (poly p, const ring r)
 
p_SetmProc p_GetSetmProc (const ring r)
 
poly p_Subst (poly p, int n, poly e, const ring r)
 
static unsigned long p_SetComp (poly p, unsigned long c, ring r)
 
static void p_SetCompP (poly p, int i, ring r)
 
static void p_SetCompP (poly p, int i, ring lmRing, ring tailRing)
 
static long p_MaxComp (poly p, ring lmRing, ring tailRing)
 
static long p_MaxComp (poly p, ring lmRing)
 
static long p_MinComp (poly p, ring lmRing, ring tailRing)
 
static long p_MinComp (poly p, ring lmRing)
 
static poly pReverse (poly p)
 
void pEnlargeSet (poly **p, int length, int increment)
 
void p_String0 (poly p, ring lmRing, ring tailRing)
 print p according to ShortOut in lmRing & tailRing More...
 
char * p_String (poly p, ring lmRing, ring tailRing)
 
void p_Write (poly p, ring lmRing, ring tailRing)
 
void p_Write0 (poly p, ring lmRing, ring tailRing)
 
void p_wrp (poly p, ring lmRing, ring tailRing)
 
void p_String0Short (const poly p, ring lmRing, ring tailRing)
 print p in a short way, if possible More...
 
void p_String0Long (const poly p, ring lmRing, ring tailRing)
 print p in a long way More...
 
static long p_FDeg (const poly p, const ring r)
 
static long p_LDeg (const poly p, int *l, const ring r)
 
long p_WFirstTotalDegree (poly p, ring r)
 
long p_WTotaldegree (poly p, const ring r)
 
long p_WDegree (poly p, const ring r)
 
long pLDeg0 (poly p, int *l, ring r)
 
long pLDeg0c (poly p, int *l, ring r)
 
long pLDegb (poly p, int *l, ring r)
 
long pLDeg1 (poly p, int *l, ring r)
 
long pLDeg1c (poly p, int *l, ring r)
 
long pLDeg1_Deg (poly p, int *l, ring r)
 
long pLDeg1c_Deg (poly p, int *l, ring r)
 
long pLDeg1_Totaldegree (poly p, int *l, ring r)
 
long pLDeg1c_Totaldegree (poly p, int *l, ring r)
 
long pLDeg1_WFirstTotalDegree (poly p, int *l, ring r)
 
long pLDeg1c_WFirstTotalDegree (poly p, int *l, ring r)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r1, const ring r2)
 same as the usual p_EqualPolys for polys belonging to equal rings More...
 
long p_Deg (poly a, const ring r)
 
static number p_SetCoeff (poly p, number n, ring r)
 
static long p_GetOrder (poly p, ring r)
 
static unsigned long p_AddComp (poly p, unsigned long v, ring r)
 
static unsigned long p_SubComp (poly p, unsigned long v, ring r)
 
static long p_GetExp (const poly p, const unsigned long iBitmask, const int VarOffset)
 get a single variable exponent @Note: the integer VarOffset encodes: More...
 
static unsigned long p_SetExp (poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
 set a single variable exponent @Note: VarOffset encodes the position in p->exp More...
 
static long p_GetExp (const poly p, const ring r, const int VarOffset)
 
static long p_SetExp (poly p, const long e, const ring r, const int VarOffset)
 
static long p_GetExp (const poly p, const int v, const ring r)
 get v^th exponent for a monomial More...
 
static long p_SetExp (poly p, const int v, const long e, const ring r)
 set v^th exponent for a monomial More...
 
static long p_IncrExp (poly p, int v, ring r)
 
static long p_DecrExp (poly p, int v, ring r)
 
static long p_AddExp (poly p, int v, long ee, ring r)
 
static long p_SubExp (poly p, int v, long ee, ring r)
 
static long p_MultExp (poly p, int v, long ee, ring r)
 
static long p_GetExpSum (poly p1, poly p2, int i, ring r)
 
static long p_GetExpDiff (poly p1, poly p2, int i, ring r)
 
static int p_Comp_k_n (poly a, poly b, int k, ring r)
 
static poly p_New (const ring, omBin bin)
 
static poly p_New (ring r)
 
static void p_LmFree (poly p, ring)
 
static void p_LmFree (poly *p, ring)
 
static poly p_LmFreeAndNext (poly p, ring)
 
static void p_LmDelete (poly p, const ring r)
 
static void p_LmDelete0 (poly p, const ring r)
 
static void p_LmDelete (poly *p, const ring r)
 
static poly p_LmDeleteAndNext (poly p, const ring r)
 
unsigned long p_GetMaxExpL (poly p, const ring r, unsigned long l_max=0)
 return the maximal exponent of p in form of the maximal long var More...
 
poly p_GetMaxExpP (poly p, ring r)
 return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set More...
 
static unsigned long p_GetMaxExp (const unsigned long l, const ring r)
 
static unsigned long p_GetMaxExp (const poly p, const ring r)
 
static unsigned long p_GetTotalDegree (const unsigned long l, const ring r, const int number_of_exps)
 
static poly p_Copy_noCheck (poly p, const ring r)
 returns a copy of p (without any additional testing) More...
 
static poly p_Copy (poly p, const ring r)
 returns a copy of p More...
 
static poly p_Head (const poly p, const ring r)
 copy the (leading) term of p More...
 
poly p_Head0 (const poly p, const ring r)
 like p_Head, but allow NULL coeff More...
 
poly p_CopyPowerProduct (const poly p, const ring r)
 like p_Head, but with coefficient 1 More...
 
poly p_CopyPowerProduct0 (const poly p, const number n, const ring r)
 like p_Head, but with coefficient n More...
 
static poly p_Copy (poly p, const ring lmRing, const ring tailRing)
 returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing More...
 
static void p_Delete (poly *p, const ring r)
 
static void p_Delete (poly *p, const ring lmRing, const ring tailRing)
 
static poly p_ShallowCopyDelete (poly p, const ring r, omBin bin)
 
static poly p_Add_q (poly p, poly q, const ring r)
 
static poly p_Add_q (poly p, poly q, int &lp, int lq, const ring r)
 like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q) More...
 
static poly p_Mult_nn (poly p, number n, const ring r)
 
static poly p_Mult_nn (poly p, number n, const ring lmRing, const ring tailRing)
 
static poly pp_Mult_nn (poly p, number n, const ring r)
 
static BOOLEAN p_LmIsConstantComp (const poly p, const ring r)
 
static BOOLEAN p_LmIsConstant (const poly p, const ring r)
 
static poly pp_Mult_mm (poly p, poly m, const ring r)
 
static poly pp_mm_Mult (poly p, poly m, const ring r)
 
static poly p_Mult_mm (poly p, poly m, const ring r)
 
static poly p_mm_Mult (poly p, poly m, const ring r)
 
static poly p_Minus_mm_Mult_qq (poly p, const poly m, const poly q, int &lp, int lq, const poly spNoether, const ring r)
 
static poly p_Minus_mm_Mult_qq (poly p, const poly m, const poly q, const ring r)
 
static poly pp_Mult_Coeff_mm_DivSelect (poly p, const poly m, const ring r)
 
static poly pp_Mult_Coeff_mm_DivSelect (poly p, int &lp, const poly m, const ring r)
 
static poly p_Neg (poly p, const ring r)
 
poly _p_Mult_q (poly p, poly q, const int copy, const ring r)
 Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2, !rIsPluralRing(r) More...
 
static poly p_Mult_q (poly p, poly q, const ring r)
 
static poly pp_Mult_qq (poly p, poly q, const ring r)
 
static poly p_Plus_mm_Mult_qq (poly p, poly m, poly q, int &lp, int lq, const ring r)
 
static poly p_Plus_mm_Mult_qq (poly p, poly m, poly q, const ring r)
 
static poly p_Merge_q (poly p, poly q, const ring r)
 
static poly p_SortAdd (poly p, const ring r, BOOLEAN revert=FALSE)
 
static poly p_SortMerge (poly p, const ring r, BOOLEAN revert=FALSE)
 
static char * p_String (poly p, ring p_ring)
 
static void p_String0 (poly p, ring p_ring)
 
static void p_Write (poly p, ring p_ring)
 
static void p_Write0 (poly p, ring p_ring)
 
static void p_wrp (poly p, ring p_ring)
 
static void p_MemAdd_NegWeightAdjust (poly p, const ring r)
 
static void p_MemSub_NegWeightAdjust (poly p, const ring r)
 
static void p_ExpVectorCopy (poly d_p, poly s_p, const ring r)
 
static poly p_Init (const ring r, omBin bin)
 
static poly p_Init (const ring r)
 
static poly p_LmInit (poly p, const ring r)
 
static poly p_LmInit (poly s_p, const ring s_r, const ring d_r, omBin d_bin)
 
static poly p_LmInit (poly s_p, const ring s_r, const ring d_r)
 
static poly p_GetExp_k_n (poly p, int l, int k, const ring r)
 
static poly p_LmShallowCopyDelete (poly p, const ring r)
 
static void p_ExpVectorAdd (poly p1, poly p2, const ring r)
 
static void p_ExpVectorSum (poly pr, poly p1, poly p2, const ring r)
 
static void p_ExpVectorSub (poly p1, poly p2, const ring r)
 
static void p_ExpVectorAddSub (poly p1, poly p2, poly p3, const ring r)
 
static void p_ExpVectorDiff (poly pr, poly p1, poly p2, const ring r)
 
static BOOLEAN p_ExpVectorEqual (poly p1, poly p2, const ring r)
 
static long p_Totaldegree (poly p, const ring r)
 
static void p_GetExpV (poly p, int *ev, const ring r)
 
static void p_GetExpVL (poly p, int64 *ev, const ring r)
 
static int64 p_GetExpVLV (poly p, int64 *ev, const ring r)
 
static void p_SetExpV (poly p, int *ev, const ring r)
 
static void p_SetExpVL (poly p, int64 *ev, const ring r)
 
static void p_SetExpVLV (poly p, int64 *ev, int64 comp, const ring r)
 
static int p_LmCmp (poly p, poly q, const ring r)
 
static int p_LtCmp (poly p, poly q, const ring r)
 
static int p_LtCmpNoAbs (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnDiffM (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnDiffP (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnEqM (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnEqP (poly p, poly q, const ring r)
 
BOOLEAN p_ComparePolys (poly p1, poly p2, const ring r)
 returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL More...
 
static int p_Cmp (poly p1, poly p2, ring r)
 
static int p_CmpPolys (poly p1, poly p2, ring r)
 
static BOOLEAN _p_LmDivisibleByNoComp (poly a, poly b, const ring r)
 return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long vars, instead of single exponents (2) Clearly, if la > lb, then FALSE (3) Suppose la <= lb, and consider first bits of single exponents in l: if TRUE, then value of these bits is la ^ lb if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., la ^ lb != la - lb More...
 
static BOOLEAN _p_LmDivisibleByNoComp (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN _p_LmDivisibleByNoCompPart (poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
 
static BOOLEAN _p_LmDivisibleByPart (poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
 
static BOOLEAN p_LmDivisibleByPart (poly a, poly b, const ring r, const int start, const int end)
 
static BOOLEAN _p_LmDivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN _p_LmDivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmDivisibleByNoComp (poly a, poly b, const ring r)
 
static BOOLEAN p_LmDivisibleByNoComp (poly a, const ring ra, poly b, const ring rb)
 
static BOOLEAN p_LmDivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_DivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_DivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmDivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmShortDivisibleBy (poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
 
static BOOLEAN p_LmShortDivisibleByNoComp (poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
 
static BOOLEAN p_LmShortDivisibleBy (poly a, unsigned long sev_a, const ring r_a, poly b, unsigned long not_sev_b, const ring r_b)
 
static BOOLEAN p_IsConstantComp (const poly p, const ring r)
 like the respective p_LmIs* routines, except that p might be empty More...
 
static BOOLEAN p_IsConstant (const poly p, const ring r)
 
static BOOLEAN p_IsOne (const poly p, const ring R)
 either poly(1) or gen(k)?! More...
 
static BOOLEAN p_IsConstantPoly (const poly p, const ring r)
 
static BOOLEAN p_IsUnit (const poly p, const ring r)
 
static BOOLEAN p_LmExpVectorAddIsOk (const poly p1, const poly p2, const ring r)
 
void p_Split (poly p, poly *r)
 
BOOLEAN p_HasNotCF (poly p1, poly p2, const ring r)
 
BOOLEAN p_HasNotCFRing (poly p1, poly p2, const ring r)
 
poly p_mInit (const char *s, BOOLEAN &ok, const ring r)
 
const char * p_Read (const char *s, poly &p, const ring r)
 
poly p_MDivide (poly a, poly b, const ring r)
 
poly p_DivideM (poly a, poly b, const ring r)
 
poly pp_DivideM (poly a, poly b, const ring r)
 
poly p_Div_nn (poly p, const number n, const ring r)
 
void p_Lcm (const poly a, const poly b, poly m, const ring r)
 
poly p_Lcm (const poly a, const poly b, const ring r)
 
poly p_LcmRat (const poly a, const poly b, const long lCompM, const ring r)
 
poly p_GetCoeffRat (poly p, int ishift, ring r)
 
void p_LmDeleteAndNextRat (poly *p, int ishift, ring r)
 
void p_ContentRat (poly &ph, const ring r)
 
poly p_Diff (poly a, int k, const ring r)
 
poly p_DiffOp (poly a, poly b, BOOLEAN multiply, const ring r)
 
int p_Weight (int c, const ring r)
 
poly p_PolyDiv (poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
 assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor: More...
 
BOOLEAN p_VectorHasUnitB (poly p, int *k, const ring r)
 
void p_VectorHasUnit (poly p, int *k, int *len, const ring r)
 
poly p_TakeOutComp1 (poly *p, int k, const ring r)
 
void p_TakeOutComp (poly *p, long comp, poly *q, int *lq, const ring r)
 
poly p_TakeOutComp (poly *p, int k, const ring r)
 
void p_DeleteComp (poly *p, int k, const ring r)
 
void pSetDegProcs (ring r, pFDegProc new_FDeg, pLDegProc new_lDeg=NULL)
 
void pRestoreDegProcs (ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
 
void p_SetModDeg (intvec *w, ring r)
 
poly pp_Jet (poly p, int m, const ring R)
 
poly p_Jet (poly p, int m, const ring R)
 
poly pp_JetW (poly p, int m, int *w, const ring R)
 
poly p_JetW (poly p, int m, int *w, const ring R)
 
poly n_PermNumber (const number z, const int *par_perm, const int OldPar, const ring src, const ring dst)
 
poly p_PermPoly (poly p, const int *perm, const ring OldRing, const ring dst, nMapFunc nMap, const int *par_perm=NULL, int OldPar=0, BOOLEAN use_mult=FALSE)
 
poly p_Series (int n, poly p, poly u, intvec *w, const ring R)
 
int p_Var (poly mi, const ring r)
 
int p_LowVar (poly p, const ring r)
 the minimal index of used variables - 1 More...
 
void p_Shift (poly *p, int i, const ring r)
 shifts components of the vector p by i More...
 
int p_Compare (const poly a, const poly b, const ring R)
 
poly p_GcdMon (poly f, poly g, const ring r)
 polynomial gcd for f=mon More...
 
poly p_Div_mm (poly p, const poly m, const ring r)
 divide polynomial by monomial More...
 
int p_MaxExpPerVar (poly p, int i, const ring r)
 max exponent of variable x_i in p More...
 

Macro Definition Documentation

◆ __p_Mult_nn

#define __p_Mult_nn (   p,
  n,
 
)    r->p_Procs->p_Mult_nn(p, n, r)

Definition at line 971 of file p_polys.h.

◆ __pp_Mult_nn

#define __pp_Mult_nn (   p,
  n,
 
)    r->p_Procs->pp_Mult_nn(p, n, r)

Definition at line 1002 of file p_polys.h.

◆ _p_LmCmpAction

#define _p_LmCmpAction (   p,
  q,
  r,
  actionE,
  actionG,
  actionS 
)
Value:
p_MemCmp_LengthGeneral_OrdGeneral(p->exp, q->exp, r->CmpL_Size, r->ordsgn, \
actionE, actionG, actionS)
int p
Definition: cfModGcd.cc:4078
#define p_MemCmp_LengthGeneral_OrdGeneral(s1, s2, length, ordsgn, actionE, actionG, actionS)
Definition: p_MemCmp.h:719

Definition at line 1276 of file p_polys.h.

◆ p_LmCmpAction

#define p_LmCmpAction (   p,
  q,
  r,
  actionE,
  actionG,
  actionS 
)     _p_LmCmpAction(p, q, r, actionE, actionG, actionS)

Definition at line 1727 of file p_polys.h.

◆ p_LmEqual

#define p_LmEqual (   p1,
  p2,
 
)    p_ExpVectorEqual(p1, p2, r)

Definition at line 1731 of file p_polys.h.

◆ p_LmTest

#define p_LmTest (   p,
 
)    _p_LmTest(p, r, PDEBUG)

Definition at line 163 of file p_polys.h.

◆ p_SetmComp

#define p_SetmComp   p_Setm

Definition at line 244 of file p_polys.h.

◆ p_Test

#define p_Test (   p,
 
)    _p_Test(p, r, PDEBUG)

Definition at line 162 of file p_polys.h.

◆ pDivAssume

#define pDivAssume (   x)    do {} while (0)

Definition at line 1282 of file p_polys.h.

◆ pIfThen

#define pIfThen (   cond,
  check 
)    do {if (cond) {check;}} while (0)

Definition at line 156 of file p_polys.h.

◆ pp_Test

#define pp_Test (   p,
  lmRing,
  tailRing 
)    _pp_Test(p, lmRing, tailRing, PDEBUG)

Definition at line 164 of file p_polys.h.

Function Documentation

◆ _p_LmDivisibleBy() [1/2]

static BOOLEAN _p_LmDivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1883 of file p_polys.h.

1884 {
1885  if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b))
1886  return _p_LmDivisibleByNoComp(a, r_a, b, r_b);
1887  return FALSE;
1888 }
#define FALSE
Definition: auxiliary.h:96
CanonicalForm b
Definition: cfModGcd.cc:4103
#define p_GetComp(p, r)
Definition: monomials.h:64
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1773

◆ _p_LmDivisibleBy() [2/2]

static BOOLEAN _p_LmDivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1877 of file p_polys.h.

1878 {
1879  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1880  return _p_LmDivisibleByNoComp(a, b, r);
1881  return FALSE;
1882 }

◆ _p_LmDivisibleByNoComp() [1/2]

static BOOLEAN _p_LmDivisibleByNoComp ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1822 of file p_polys.h.

1823 {
1824  int i=r_a->N;
1825  pAssume1(r_a->N == r_b->N);
1826 
1827  do
1828  {
1829  if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1830  return FALSE;
1831  i--;
1832  }
1833  while (i);
1834 /*#ifdef HAVE_RINGS
1835  return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1836 #else
1837 */
1838  return TRUE;
1839 //#endif
1840 }
#define TRUE
Definition: auxiliary.h:100
int i
Definition: cfEzgcd.cc:132
#define pAssume1(cond)
Definition: monomials.h:171
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469

◆ _p_LmDivisibleByNoComp() [2/2]

static BOOLEAN _p_LmDivisibleByNoComp ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long vars, instead of single exponents (2) Clearly, if la > lb, then FALSE (3) Suppose la <= lb, and consider first bits of single exponents in l: if TRUE, then value of these bits is la ^ lb if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., la ^ lb != la - lb

Definition at line 1773 of file p_polys.h.

1774 {
1775  int i=r->VarL_Size - 1;
1776  unsigned long divmask = r->divmask;
1777  unsigned long la, lb;
1778 
1779  if (r->VarL_LowIndex >= 0)
1780  {
1781  i += r->VarL_LowIndex;
1782  do
1783  {
1784  la = a->exp[i];
1785  lb = b->exp[i];
1786  if ((la > lb) ||
1787  (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1788  {
1790  return FALSE;
1791  }
1792  i--;
1793  }
1794  while (i>=r->VarL_LowIndex);
1795  }
1796  else
1797  {
1798  do
1799  {
1800  la = a->exp[r->VarL_Offset[i]];
1801  lb = b->exp[r->VarL_Offset[i]];
1802  if ((la > lb) ||
1803  (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1804  {
1806  return FALSE;
1807  }
1808  i--;
1809  }
1810  while (i>=0);
1811  }
1812 /*#ifdef HAVE_RINGS
1813  pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf));
1814  return (!rField_is_Ring(r)) || n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf);
1815 #else
1816 */
1818  return TRUE;
1819 //#endif
1820 }
BOOLEAN p_DebugLmDivisibleByNoComp(poly a, poly b, ring r)
Definition: pDebug.cc:141
#define pDivAssume(x)
Definition: p_polys.h:1282

◆ _p_LmDivisibleByNoCompPart()

static BOOLEAN _p_LmDivisibleByNoCompPart ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1843 of file p_polys.h.

1844 {
1845  int i=end;
1846  pAssume1(r_a->N == r_b->N);
1847 
1848  do
1849  {
1850  if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1851  return FALSE;
1852  i--;
1853  }
1854  while (i>=start);
1855 /*#ifdef HAVE_RINGS
1856  return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1857 #else
1858 */
1859  return TRUE;
1860 //#endif
1861 }

◆ _p_LmDivisibleByPart()

static BOOLEAN _p_LmDivisibleByPart ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1862 of file p_polys.h.

1863 {
1864  if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b))
1865  return _p_LmDivisibleByNoCompPart(a, r_a, b, r_b,start,end);
1866  return FALSE;
1867 }
static BOOLEAN _p_LmDivisibleByNoCompPart(poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
Definition: p_polys.h:1843

◆ _p_LmTest()

BOOLEAN _p_LmTest ( poly  p,
ring  r,
int  level 
)

Definition at line 323 of file pDebug.cc.

324 {
325  if (level < 0 || p == NULL) return TRUE;
326  poly pnext = pNext(p);
327  pNext(p) = NULL;
328  BOOLEAN test_res = _p_Test(p, r, level);
329  pNext(p) = pnext;
330  return test_res;
331 }
int BOOLEAN
Definition: auxiliary.h:87
int level(const CanonicalForm &f)
#define pNext(p)
Definition: monomials.h:36
#define NULL
Definition: omList.c:12
BOOLEAN _p_Test(poly p, ring r, int level)
Definition: pDebug.cc:212

◆ _p_Mult_q()

poly _p_Mult_q ( poly  p,
poly  q,
const int  copy,
const ring  r 
)

Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2, !rIsPluralRing(r)

Definition at line 313 of file p_Mult_q.cc.

314 {
315  assume(r != NULL);
316 #ifdef HAVE_RINGS
317  if (!nCoeff_is_Domain(r->cf))
318  return _p_Mult_q_Normal_ZeroDiv(p, q, copy, r);
319 #endif
320  int lp, lq, l;
321  poly pt;
322 
323  // MIN_LENGTH_FACTORY must be >= MIN_LENGTH_FACTORY_QQ, MIN_FLINT_QQ, MIN_FLINT_Zp 20
325 
326  if (lp < lq)
327  {
328  pt = p;
329  p = q;
330  q = pt;
331  l = lp;
332  lp = lq;
333  lq = l;
334  }
335  BOOLEAN pure_polys=(p_GetComp(p,r)==0) && (p_GetComp(q,r)==0);
336  #ifdef HAVE_FLINT
337  #if __FLINT_RELEASE >= 20503
338  if (lq>MIN_FLINT_QQ)
339  {
340  fmpq_mpoly_ctx_t ctx;
341  if (pure_polys && rField_is_Q(r) && !convSingRFlintR(ctx,r))
342  {
343  // lq is a lower bound for the length of p and q
344  poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
345  if (!copy)
346  {
347  p_Delete(&p,r);
348  p_Delete(&q,r);
349  }
350  return res;
351  }
352  }
353  if (lq>MIN_FLINT_Zp)
354  {
355  nmod_mpoly_ctx_t ctx;
356  if (pure_polys && rField_is_Zp(r) && !convSingRFlintR(ctx,r))
357  {
358  // lq is a lower bound for the length of p and q
359  poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
360  if (!copy)
361  {
362  p_Delete(&p,r);
363  p_Delete(&q,r);
364  }
365  return res;
366  }
367  }
368  if (lq>MIN_FLINT_Z)
369  {
370  fmpz_mpoly_ctx_t ctx;
371  if (pure_polys && rField_is_Z(r) && !convSingRFlintR(ctx,r))
372  {
373  // lq is a lower bound for the length of p and q
374  poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
375  if (!copy)
376  {
377  p_Delete(&p,r);
378  p_Delete(&q,r);
379  }
380  return res;
381  }
382  }
383  #endif
384  #endif
386  return _p_Mult_q_Normal(p, q, copy, r);
387  else if (pure_polys
388  && (((lq >= MIN_LENGTH_FACTORY)
389  && (r->cf->convSingNFactoryN!=ndConvSingNFactoryN))
390  || ((lq >= MIN_LENGTH_FACTORY_QQ)
391  && rField_is_Q(r))))
392  {
393  poly h=singclap_pmult(p,q,r);
394  if (!copy)
395  {
396  p_Delete(&p,r);
397  p_Delete(&q,r);
398  }
399  return h;
400  }
401  else
402  {
403  lp=pLength(p);
404  lq=pLength(q);
405  return _p_Mult_q_Bucket(p, lp, q, lq, copy, r);
406  }
407 }
int l
Definition: cfEzgcd.cc:100
poly singclap_pmult(poly f, poly g, const ring r)
Definition: clapsing.cc:577
static FORCE_INLINE BOOLEAN nCoeff_is_Domain(const coeffs r)
returns TRUE, if r is a field or r has no zero divisors (i.e is a domain)
Definition: coeffs.h:739
CanonicalForm res
Definition: facAbsFact.cc:60
CFArray copy(const CFList &list)
write elements of list into an array
STATIC_VAR Poly * h
Definition: janet.cc:971
#define assume(x)
Definition: mod2.h:387
Definition: lq.h:40
CanonicalForm ndConvSingNFactoryN(number, BOOLEAN, const coeffs)
Definition: numbers.cc:276
#define TEST_OPT_NOT_BUCKETS
Definition: options.h:105
static void pqLengthApprox(poly p, poly q, int &lp, int &lq, const int min)
Definition: p_Mult_q.cc:69
#define MIN_LENGTH_FACTORY
Definition: p_Mult_q.cc:304
#define MIN_FLINT_Z
Definition: p_Mult_q.cc:308
#define MIN_FLINT_QQ
Definition: p_Mult_q.cc:306
static poly _p_Mult_q_Normal(poly p, poly q, const int copy, const ring r)
Definition: p_Mult_q.cc:223
#define MIN_LENGTH_FACTORY_QQ
Definition: p_Mult_q.cc:305
static poly _p_Mult_q_Bucket(poly p, const int lp, poly q, const int lq, const int copy, const ring r)
Definition: p_Mult_q.cc:100
static poly _p_Mult_q_Normal_ZeroDiv(poly p, poly q, const int copy, const ring r)
Definition: p_Mult_q.cc:195
#define MIN_FLINT_Zp
Definition: p_Mult_q.cc:307
#define MIN_LENGTH_BUCKET
Definition: p_Mult_q.h:21
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
static unsigned pLength(poly a)
Definition: p_polys.h:191
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:510
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:501
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:507

◆ _p_Test()

BOOLEAN _p_Test ( poly  p,
ring  r,
int  level 
)

Definition at line 212 of file pDebug.cc.

213 {
214  assume(r->cf !=NULL);
215 
216  if (PDEBUG > level) level = PDEBUG;
217  if (level < 0 || p == NULL) return TRUE;
218 
219  poly p_prev = NULL;
220 
221  #ifndef OM_NDEBUG
222  #ifndef X_OMALLOC
223  // check addr with level+1 so as to check bin/page of addr
224  _pPolyAssumeReturnMsg(omTestBinAddrSize(p, (omSizeWOfBin(r->PolyBin))*SIZEOF_LONG, level+1)
225  == omError_NoError, "memory error",p,r);
226  #endif
227  #endif
228 
230 
231  // this checks that p does not contain a loop: rather expensive O(length^2)
232  #ifndef OM_NDEBUG
233  if (level > 1)
235  #endif
236 
237  int ismod = p_GetComp(p, r) != 0;
238 
239  while (p != NULL)
240  {
241  // ring check
243  #ifndef OM_NDEBUG
244  #ifndef X_OMALLOC
245  // omAddr check
246  _pPolyAssumeReturnMsg(omTestBinAddrSize(p, (omSizeWOfBin(r->PolyBin))*SIZEOF_LONG, 1)
247  == omError_NoError, "memory error",p,r);
248  #endif
249  #endif
250  // number/coef check
251  _pPolyAssumeReturnMsg(p->coef != NULL || (n_GetChar(r->cf) >= 2), "NULL coef",p,r);
252 
253  #ifdef LDEBUG
254  _pPolyAssumeReturnMsg(n_Test(p->coef,r->cf),"coeff err",p,r);
255  #endif
256  _pPolyAssumeReturnMsg(!n_IsZero(p->coef, r->cf), "Zero coef",p,r);
257 
258  // check for valid comp
259  _pPolyAssumeReturnMsg(p_GetComp(p, r) >= 0 && (p_GetComp(p, r)<65000), "component out of range ?",p,r);
260  // check for mix poly/vec representation
261  _pPolyAssumeReturnMsg(ismod == (p_GetComp(p, r) != 0), "mixed poly/vector",p,r);
262 
263  // special check for ringorder_s/S
264  if ((r->typ!=NULL) && (r->typ[0].ord_typ == ro_syzcomp))
265  {
266  long c1, cc1, ccc1, ec1;
267  sro_ord* o = &(r->typ[0]);
268 
269  c1 = p_GetComp(p, r);
270  if (o->data.syzcomp.Components!=NULL)
271  {
272  cc1 = o->data.syzcomp.Components[c1];
273  ccc1 = o->data.syzcomp.ShiftedComponents[cc1];
274  }
275  else { cc1=0; ccc1=0; }
276  _pPolyAssumeReturnMsg(c1 == 0 || cc1 != 0, "Component <-> TrueComponent zero mismatch",p,r);
277  _pPolyAssumeReturnMsg(c1 == 0 || ccc1 != 0,"Component <-> ShiftedComponent zero mismatch",p,r);
278  ec1 = p->exp[o->data.syzcomp.place];
279  //pPolyAssumeReturnMsg(ec1 == ccc1, "Shifted comp out of sync. should %d, is %d");
280  if (ec1 != ccc1)
281  {
282  dPolyReportError(p,r,"Shifted comp out of sync. should %d, is %d",ccc1,ec1);
283  return FALSE;
284  }
285  }
286 
287  // check that p_Setm works ok
288  if (level > 0)
289  {
290  poly p_should_equal = p_DebugInit(p, r, r);
291  _pPolyAssumeReturnMsg(p_ExpVectorEqual(p, p_should_equal, r), "p_Setm field(s) out of sync",p,r);
292  p_LmFree(p_should_equal, r);
293  }
294 
295  // check order
296  if (p_prev != NULL)
297  {
298  int cmp = p_LmCmp(p_prev, p, r);
299  if (cmp == 0)
300  {
301  _pPolyAssumeReturnMsg(0, "monoms p and p->next are equal", p_prev, r);
302  }
303  else
304  _pPolyAssumeReturnMsg(p_LmCmp(p_prev, p, r) == 1, "wrong order", p_prev, r);
305 
306  // check that compare worked sensibly
307  if (level > 1 && p_GetComp(p_prev, r) == p_GetComp(p, r))
308  {
309  int i;
310  for (i=r->N; i>0; i--)
311  {
312  if (p_GetExp(p_prev, i, r) != p_GetExp(p, i, r)) break;
313  }
314  _pPolyAssumeReturnMsg(i > 0, "Exponents equal but compare different", p_prev, r);
315  }
316  }
317  p_prev = p;
318  pIter(p);
319  }
320  return TRUE;
321 }
#define PDEBUG
Definition: auxiliary.h:170
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:712
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition: coeffs.h:464
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
Definition: coeffs.h:444
#define pFalseReturn(cond)
Definition: monomials.h:139
#define pIter(p)
Definition: monomials.h:37
#define _pPolyAssumeReturnMsg(cond, msg, p, r)
Definition: monomials.h:124
#define omSizeWOfBin(bin_ptr)
@ omError_NoError
Definition: omError.h:18
#define omTestList(ptr, level)
Definition: omList.h:81
static poly p_DebugInit(poly p, ring src_ring, ring dest_ring)
Definition: pDebug.cc:195
BOOLEAN dPolyReportError(poly p, ring r, const char *fmt,...)
Definition: pDebug.cc:42
BOOLEAN p_CheckRing(ring r)
Definition: pDebug.cc:128
BOOLEAN p_LmCheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:71
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition: p_polys.cc:4591
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1580
static void p_LmFree(poly p, ring)
Definition: p_polys.h:683
@ ro_syzcomp
Definition: ring.h:59
union sro_ord::@1 data
Definition: ring.h:219
#define omTestBinAddrSize(A, B, C)
Definition: xalloc.h:272

◆ _pp_Test()

BOOLEAN _pp_Test ( poly  p,
ring  lmRing,
ring  tailRing,
int  level 
)

Definition at line 333 of file pDebug.cc.

334 {
335  if (PDEBUG > level) level = PDEBUG;
336  if (level < 0 || p == NULL) return TRUE;
337  if (pNext(p) == NULL || lmRing == tailRing) return _p_Test(p, lmRing, level);
338 
339  pFalseReturn(_p_LmTest(p, lmRing, level));
340  pFalseReturn(_p_Test(pNext(p), tailRing, level));
341 
342  // check that lm > Lm(tail)
343  if (level > 1)
344  {
345  poly lm = p;
346  poly tail = p_DebugInit(pNext(p), tailRing, lmRing);
347  poly pnext = pNext(lm);
348  pNext(lm) = tail;
349  BOOLEAN cmp = p_LmCmp(lm, tail, lmRing);
350  if (cmp != 1)
351  dPolyReportError(lm, lmRing, "wrong order: lm <= Lm(tail)");
352  p_LmFree(tail, lmRing);
353  pNext(lm) = pnext;
354  return (cmp == 1);
355  }
356  return TRUE;
357 }
BOOLEAN _p_LmTest(poly p, ring r, int level)
Definition: pDebug.cc:323

◆ n_PermNumber()

poly n_PermNumber ( const number  z,
const int *  par_perm,
const int  OldPar,
const ring  src,
const ring  dst 
)

Definition at line 4092 of file p_polys.cc.

4093 {
4094 #if 0
4095  PrintS("\nSource Ring: \n");
4096  rWrite(src);
4097 
4098  if(0)
4099  {
4100  number zz = n_Copy(z, src->cf);
4101  PrintS("z: "); n_Write(zz, src);
4102  n_Delete(&zz, src->cf);
4103  }
4104 
4105  PrintS("\nDestination Ring: \n");
4106  rWrite(dst);
4107 
4108  /*Print("\nOldPar: %d\n", OldPar);
4109  for( int i = 1; i <= OldPar; i++ )
4110  {
4111  Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]);
4112  }*/
4113 #endif
4114  if( z == NULL )
4115  return NULL;
4116 
4117  const coeffs srcCf = src->cf;
4118  assume( srcCf != NULL );
4119 
4120  assume( !nCoeff_is_GF(srcCf) );
4121  assume( src->cf->extRing!=NULL );
4122 
4123  poly zz = NULL;
4124 
4125  const ring srcExtRing = srcCf->extRing;
4126  assume( srcExtRing != NULL );
4127 
4128  const coeffs dstCf = dst->cf;
4129  assume( dstCf != NULL );
4130 
4131  if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)?
4132  {
4133  zz = (poly) z;
4134  if( zz == NULL ) return NULL;
4135  }
4136  else if (nCoeff_is_transExt(srcCf))
4137  {
4138  assume( !IS0(z) );
4139 
4140  zz = NUM((fraction)z);
4141  p_Test (zz, srcExtRing);
4142 
4143  if( zz == NULL ) return NULL;
4144  if( !DENIS1((fraction)z) )
4145  {
4146  if (!p_IsConstant(DEN((fraction)z),srcExtRing))
4147  WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denominator.");
4148  }
4149  }
4150  else
4151  {
4152  assume (FALSE);
4153  WerrorS("Number permutation is not implemented for this data yet!");
4154  return NULL;
4155  }
4156 
4157  assume( zz != NULL );
4158  p_Test (zz, srcExtRing);
4159 
4160  nMapFunc nMap = n_SetMap(srcExtRing->cf, dstCf);
4161 
4162  assume( nMap != NULL );
4163 
4164  poly qq;
4165  if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0))
4166  {
4167  int* perm;
4168  perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int));
4169  for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--)
4170  perm[i]=-i;
4171  qq = p_PermPoly(zz, perm, srcExtRing, dst, nMap, NULL, rVar(srcExtRing)-1);
4172  omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int));
4173  }
4174  else
4175  qq = p_PermPoly(zz, par_perm-1, srcExtRing, dst, nMap, NULL, rVar (srcExtRing)-1);
4176 
4177  if(nCoeff_is_transExt(srcCf)
4178  && (!DENIS1((fraction)z))
4179  && p_IsConstant(DEN((fraction)z),srcExtRing))
4180  {
4181  number n=nMap(pGetCoeff(DEN((fraction)z)),srcExtRing->cf, dstCf);
4182  qq=p_Div_nn(qq,n,dst);
4183  n_Delete(&n,dstCf);
4184  p_Normalize(qq,dst);
4185  }
4186  p_Test (qq, dst);
4187 
4188  return qq;
4189 }
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:451
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:839
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:700
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:455
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition: coeffs.h:591
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:910
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:918
#define WarnS
Definition: emacs.cc:78
void WerrorS(const char *s)
Definition: feFopen.cc:24
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
The main handler for Singular numbers which are suitable for Singular polynomials.
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc0(size)
Definition: omAllocDecl.h:211
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4195
poly p_Div_nn(poly p, const number n, const ring r)
Definition: p_polys.cc:1501
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3879
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:2011
#define p_Test(p, r)
Definition: p_polys.h:162
@ NUM
Definition: readcf.cc:170
void PrintS(const char *s)
Definition: reporter.cc:284
void rWrite(ring r, BOOLEAN details)
Definition: ring.cc:226
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:600
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:593

◆ p_Add_q() [1/2]

static poly p_Add_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 936 of file p_polys.h.

937 {
938  assume( (p != q) || (p == NULL && q == NULL) );
939  if (q==NULL) return p;
940  if (p==NULL) return q;
941  int shorter;
942  return r->p_Procs->p_Add_q(p, q, shorter, r);
943 }

◆ p_Add_q() [2/2]

static poly p_Add_q ( poly  p,
poly  q,
int &  lp,
int  lq,
const ring  r 
)
inlinestatic

like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q)

Definition at line 946 of file p_polys.h.

947 {
948  assume( (p != q) || (p == NULL && q == NULL) );
949  if (q==NULL) return p;
950  if (p==NULL) { lp=lq; return q; }
951  int shorter;
952  poly res = r->p_Procs->p_Add_q(p, q, shorter, r);
953  lp += lq - shorter;
954  return res;
955 }

◆ p_AddComp()

static unsigned long p_AddComp ( poly  p,
unsigned long  v,
ring  r 
)
inlinestatic

Definition at line 447 of file p_polys.h.

448 {
449  p_LmCheckPolyRing2(p, r);
451  return __p_GetComp(p,r) += v;
452 }
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:199
#define pAssume2(cond)
Definition: monomials.h:193
#define __p_GetComp(p, r)
Definition: monomials.h:63
#define rRing_has_Comp(r)
Definition: monomials.h:266

◆ p_AddExp()

static long p_AddExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 606 of file p_polys.h.

607 {
608  p_LmCheckPolyRing2(p, r);
609  int e = p_GetExp(p,v,r);
610  e += ee;
611  return p_SetExp(p,v,e,r);
612 }
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488

◆ p_CheckIsFromRing()

BOOLEAN p_CheckIsFromRing ( poly  p,
ring  r 
)

Definition at line 102 of file pDebug.cc.

103 {
104  while (p!=NULL)
105  {
107  pIter(p);
108  }
109  return TRUE;
110 }

◆ p_CheckPolyRing()

BOOLEAN p_CheckPolyRing ( poly  p,
ring  r 
)

Definition at line 112 of file pDebug.cc.

113 {
114  #ifndef X_OMALLOC
115  pAssumeReturn(r != NULL && r->PolyBin != NULL);
116  #endif
117  return p_CheckIsFromRing(p, r);
118 }
#define pAssumeReturn(cond)
Definition: monomials.h:78
BOOLEAN p_CheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:102

◆ p_CheckRing()

BOOLEAN p_CheckRing ( ring  r)

Definition at line 128 of file pDebug.cc.

129 {
130  #ifndef X_OMALLOC
131  pAssumeReturn(r != NULL && r->PolyBin != NULL);
132  #endif
133  return TRUE;
134 }

◆ p_ChineseRemainder()

poly p_ChineseRemainder ( poly *  xx,
number *  x,
number *  q,
int  rl,
CFArray inv_cache,
const ring  R 
)

Definition at line 88 of file p_polys.cc.

89 {
90  poly r,h,hh;
91  int j;
92  poly res_p=NULL;
93  loop
94  {
95  /* search the lead term */
96  r=NULL;
97  for(j=rl-1;j>=0;j--)
98  {
99  h=xx[j];
100  if ((h!=NULL)
101  &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
102  r=h;
103  }
104  /* nothing found -> return */
105  if (r==NULL) break;
106  /* create the monomial in h */
107  h=p_Head(r,R);
108  /* collect the coeffs in x[..]*/
109  for(j=rl-1;j>=0;j--)
110  {
111  hh=xx[j];
112  if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0))
113  {
114  x[j]=pGetCoeff(hh);
115  hh=p_LmFreeAndNext(hh,R);
116  xx[j]=hh;
117  }
118  else
119  x[j]=n_Init(0, R->cf);
120  }
121  number n=n_ChineseRemainderSym(x,q,rl,TRUE,inv_cache,R->cf);
122  for(j=rl-1;j>=0;j--)
123  {
124  x[j]=NULL; // n_Init(0...) takes no memory
125  }
126  if (n_IsZero(n,R->cf)) p_Delete(&h,R);
127  else
128  {
129  //Print("new mon:");pWrite(h);
130  p_SetCoeff(h,n,R);
131  pNext(h)=res_p;
132  res_p=h; // building res_p in reverse order!
133  }
134  }
135  res_p=pReverse(res_p);
136  p_Test(res_p, R);
137  return res_p;
138 }
Variable x
Definition: cfModGcd.cc:4082
static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs r)
Definition: coeffs.h:764
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:538
int j
Definition: facHensel.cc:110
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:412
static poly pReverse(poly p)
Definition: p_polys.h:335
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition: p_polys.h:860
static poly p_LmFreeAndNext(poly p, ring)
Definition: p_polys.h:711
#define R
Definition: sirandom.c:27
#define loop
Definition: structs.h:75

◆ p_Cleardenom()

poly p_Cleardenom ( poly  p,
const ring  r 
)

Definition at line 2910 of file p_polys.cc.

2911 {
2912  if( p == NULL )
2913  return NULL;
2914 
2915  assume( r != NULL );
2916  assume( r->cf != NULL );
2917  const coeffs C = r->cf;
2918 
2919 #if CLEARENUMERATORS
2920  if( 0 )
2921  {
2922  CPolyCoeffsEnumerator itr(p);
2923  n_ClearDenominators(itr, C);
2924  n_ClearContent(itr, C); // divide out the content
2925  p_Test(p, r); n_Test(pGetCoeff(p), C);
2926  assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2927 // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2928  return p;
2929  }
2930 #endif
2931 
2932  number d, h;
2933 
2934  if (rField_is_Ring(r))
2935  {
2936  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2937  return p;
2938  }
2939 
2941  {
2942  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2943  return p;
2944  }
2945 
2946  assume(p != NULL);
2947 
2948  if(pNext(p)==NULL)
2949  {
2950  if (!TEST_OPT_CONTENTSB)
2951  p_SetCoeff(p,n_Init(1,C),r);
2952  else if(!n_GreaterZero(pGetCoeff(p),C))
2953  p = p_Neg(p,r);
2954  return p;
2955  }
2956 
2957  assume(pNext(p)!=NULL);
2958  poly start=p;
2959 
2960 #if 0 && CLEARENUMERATORS
2961 //CF: does not seem to work that well..
2962 
2963  if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2964  {
2965  CPolyCoeffsEnumerator itr(p);
2966  n_ClearDenominators(itr, C);
2967  n_ClearContent(itr, C); // divide out the content
2968  p_Test(p, r); n_Test(pGetCoeff(p), C);
2969  assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2970 // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2971  return start;
2972  }
2973 #endif
2974 
2975  if(1)
2976  {
2977  // get lcm of all denominators ----------------------------------
2978  h = n_Init(1,C);
2979  while (p!=NULL)
2980  {
2981  n_Normalize(pGetCoeff(p),C);
2983  n_Delete(&h,C);
2984  h=d;
2985  pIter(p);
2986  }
2987  /* h now contains the 1/lcm of all denominators */
2988  if(!n_IsOne(h,C))
2989  {
2990  // multiply by the lcm of all denominators
2991  p = start;
2992  while (p!=NULL)
2993  {
2994  d=n_Mult(h,pGetCoeff(p),C);
2995  n_Normalize(d,C);
2996  p_SetCoeff(p,d,r);
2997  pIter(p);
2998  }
2999  }
3000  n_Delete(&h,C);
3001  p=start;
3002 
3003  p_ContentForGB(p,r);
3004 #ifdef HAVE_RATGRING
3005  if (rIsRatGRing(r))
3006  {
3007  /* quick unit detection in the rational case is done in gr_nc_bba */
3008  p_ContentRat(p, r);
3009  start=p;
3010  }
3011 #endif
3012  }
3013 
3014  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
3015 
3016  return start;
3017 }
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
Definition: coeffs.h:636
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1,...
Definition: coeffs.h:695
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
Definition: coeffs.h:494
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition: coeffs.h:806
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition: coeffs.h:935
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition: coeffs.h:885
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition: coeffs.h:928
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:578
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition: coeffs.h:468
#define TEST_OPT_INTSTRATEGY
Definition: options.h:110
#define TEST_OPT_CONTENTSB
Definition: options.h:127
void p_ContentRat(poly &ph, const ring r)
Definition: p_polys.cc:1740
void p_ContentForGB(poly ph, const ring r)
Definition: p_polys.cc:2420
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1107
static BOOLEAN rIsRatGRing(const ring r)
Definition: ring.h:427
#define rField_is_Ring(R)
Definition: ring.h:486

◆ p_Cleardenom_n()

void p_Cleardenom_n ( poly  p,
const ring  r,
number &  c 
)

Definition at line 3019 of file p_polys.cc.

3020 {
3021  const coeffs C = r->cf;
3022  number d, h;
3023 
3024  assume( ph != NULL );
3025 
3026  poly p = ph;
3027 
3028 #if CLEARENUMERATORS
3029  if( 0 )
3030  {
3031  CPolyCoeffsEnumerator itr(ph);
3032 
3033  n_ClearDenominators(itr, d, C); // multiply with common denom. d
3034  n_ClearContent(itr, h, C); // divide by the content h
3035 
3036  c = n_Div(d, h, C); // d/h
3037 
3038  n_Delete(&d, C);
3039  n_Delete(&h, C);
3040 
3041  n_Test(c, C);
3042 
3043  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3044  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3045 /*
3046  if(!n_GreaterZero(pGetCoeff(ph),C))
3047  {
3048  ph = p_Neg(ph,r);
3049  c = n_InpNeg(c, C);
3050  }
3051 */
3052  return;
3053  }
3054 #endif
3055 
3056 
3057  if( pNext(p) == NULL )
3058  {
3059  if(!TEST_OPT_CONTENTSB)
3060  {
3061  c=n_Invers(pGetCoeff(p), C);
3062  p_SetCoeff(p, n_Init(1, C), r);
3063  }
3064  else
3065  {
3066  c=n_Init(1,C);
3067  }
3068 
3069  if(!n_GreaterZero(pGetCoeff(ph),C))
3070  {
3071  ph = p_Neg(ph,r);
3072  c = n_InpNeg(c, C);
3073  }
3074 
3075  return;
3076  }
3077  if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; }
3078 
3079  assume( pNext(p) != NULL );
3080 
3081 #if CLEARENUMERATORS
3082  if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
3083  {
3084  CPolyCoeffsEnumerator itr(ph);
3085 
3086  n_ClearDenominators(itr, d, C); // multiply with common denom. d
3087  n_ClearContent(itr, h, C); // divide by the content h
3088 
3089  c = n_Div(d, h, C); // d/h
3090 
3091  n_Delete(&d, C);
3092  n_Delete(&h, C);
3093 
3094  n_Test(c, C);
3095 
3096  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3097  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3098 /*
3099  if(!n_GreaterZero(pGetCoeff(ph),C))
3100  {
3101  ph = p_Neg(ph,r);
3102  c = n_InpNeg(c, C);
3103  }
3104 */
3105  return;
3106  }
3107 #endif
3108 
3109 
3110 
3111 
3112  if(1)
3113  {
3114  h = n_Init(1,C);
3115  while (p!=NULL)
3116  {
3117  n_Normalize(pGetCoeff(p),C);
3119  n_Delete(&h,C);
3120  h=d;
3121  pIter(p);
3122  }
3123  c=h;
3124  /* contains the 1/lcm of all denominators */
3125  if(!n_IsOne(h,C))
3126  {
3127  p = ph;
3128  while (p!=NULL)
3129  {
3130  /* should be: // NOTE: don't use ->coef!!!!
3131  * number hh;
3132  * nGetDenom(p->coef,&hh);
3133  * nMult(&h,&hh,&d);
3134  * nNormalize(d);
3135  * nDelete(&hh);
3136  * nMult(d,p->coef,&hh);
3137  * nDelete(&d);
3138  * nDelete(&(p->coef));
3139  * p->coef =hh;
3140  */
3141  d=n_Mult(h,pGetCoeff(p),C);
3142  n_Normalize(d,C);
3143  p_SetCoeff(p,d,r);
3144  pIter(p);
3145  }
3146  if (rField_is_Q_a(r))
3147  {
3148  loop
3149  {
3150  h = n_Init(1,C);
3151  p=ph;
3152  while (p!=NULL)
3153  {
3155  n_Delete(&h,C);
3156  h=d;
3157  pIter(p);
3158  }
3159  /* contains the 1/lcm of all denominators */
3160  if(!n_IsOne(h,C))
3161  {
3162  p = ph;
3163  while (p!=NULL)
3164  {
3165  /* should be: // NOTE: don't use ->coef!!!!
3166  * number hh;
3167  * nGetDenom(p->coef,&hh);
3168  * nMult(&h,&hh,&d);
3169  * nNormalize(d);
3170  * nDelete(&hh);
3171  * nMult(d,p->coef,&hh);
3172  * nDelete(&d);
3173  * nDelete(&(p->coef));
3174  * p->coef =hh;
3175  */
3176  d=n_Mult(h,pGetCoeff(p),C);
3177  n_Normalize(d,C);
3178  p_SetCoeff(p,d,r);
3179  pIter(p);
3180  }
3181  number t=n_Mult(c,h,C);
3182  n_Delete(&c,C);
3183  c=t;
3184  }
3185  else
3186  {
3187  break;
3188  }
3189  n_Delete(&h,C);
3190  }
3191  }
3192  }
3193  }
3194 
3195  if(!n_GreaterZero(pGetCoeff(ph),C))
3196  {
3197  ph = p_Neg(ph,r);
3198  c = n_InpNeg(c, C);
3199  }
3200 
3201 }
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
Definition: coeffs.h:564
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:557
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
Definition: coeffs.h:615
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:540

◆ p_Cmp()

static int p_Cmp ( poly  p1,
poly  p2,
ring  r 
)
inlinestatic

Definition at line 1735 of file p_polys.h.

1736 {
1737  if (p2==NULL)
1738  {
1739  if (p1==NULL) return 0;
1740  return 1;
1741  }
1742  if (p1==NULL)
1743  return -1;
1744  return p_LmCmp(p1,p2,r);
1745 }

◆ p_CmpPolys()

static int p_CmpPolys ( poly  p1,
poly  p2,
ring  r 
)
inlinestatic

Definition at line 1747 of file p_polys.h.

1748 {
1749  if (p2==NULL)
1750  {
1751  if (p1==NULL) return 0;
1752  return 1;
1753  }
1754  if (p1==NULL)
1755  return -1;
1756  return p_ComparePolys(p1,p2,r);
1757 }
BOOLEAN p_ComparePolys(poly p1, poly p2, const ring r)
returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
Definition: p_polys.cc:4641

◆ p_Comp_k_n()

static int p_Comp_k_n ( poly  a,
poly  b,
int  k,
ring  r 
)
inlinestatic

Definition at line 640 of file p_polys.h.

641 {
642  if ((a==NULL) || (b==NULL) ) return FALSE;
643  p_LmCheckPolyRing2(a, r);
644  p_LmCheckPolyRing2(b, r);
645  pAssume2(k > 0 && k <= r->N);
646  int i=k;
647  for(;i<=r->N;i++)
648  {
649  if (p_GetExp(a,i,r) != p_GetExp(b,i,r)) return FALSE;
650  // if (a->exp[(r->VarOffset[i] & 0xffffff)] != b->exp[(r->VarOffset[i] & 0xffffff)]) return FALSE;
651  }
652  return TRUE;
653 }
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
int k
Definition: cfEzgcd.cc:99

◆ p_Compare()

int p_Compare ( const poly  a,
const poly  b,
const ring  R 
)

Definition at line 4972 of file p_polys.cc.

4973 {
4974  int r=p_Cmp(a,b,R);
4975  if ((r==0)&&(a!=NULL))
4976  {
4977  number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf);
4978  /* compare lead coeffs */
4979  r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */
4980  n_Delete(&h,R->cf);
4981  }
4982  else if (a==NULL)
4983  {
4984  if (b==NULL)
4985  {
4986  /* compare 0, 0 */
4987  r=0;
4988  }
4989  else if(p_IsConstant(b,R))
4990  {
4991  /* compare 0, const */
4992  r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */
4993  }
4994  }
4995  else if (b==NULL)
4996  {
4997  if (p_IsConstant(a,R))
4998  {
4999  /* compare const, 0 */
5000  r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */
5001  }
5002  }
5003  return(r);
5004 }
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
Definition: coeffs.h:655
static int p_Cmp(poly p1, poly p2, ring r)
Definition: p_polys.h:1735

◆ p_ComparePolys()

BOOLEAN p_ComparePolys ( poly  p1,
poly  p2,
const ring  r 
)

returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL

Definition at line 4641 of file p_polys.cc.

4642 {
4643  number n,nn;
4644  pAssume(p1 != NULL && p2 != NULL);
4645 
4646  if (!p_LmEqual(p1,p2,r)) //compare leading mons
4647  return FALSE;
4648  if ((pNext(p1)==NULL) && (pNext(p2)!=NULL))
4649  return FALSE;
4650  if ((pNext(p2)==NULL) && (pNext(p1)!=NULL))
4651  return FALSE;
4652  if (pLength(p1) != pLength(p2))
4653  return FALSE;
4654  #ifdef HAVE_RINGS
4655  if (rField_is_Ring(r))
4656  {
4657  if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE;
4658  }
4659  #endif
4660  n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf);
4661  while ((p1 != NULL) /*&& (p2 != NULL)*/)
4662  {
4663  if ( ! p_LmEqual(p1, p2,r))
4664  {
4665  n_Delete(&n, r->cf);
4666  return FALSE;
4667  }
4668  if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf))
4669  {
4670  n_Delete(&n, r->cf);
4671  n_Delete(&nn, r->cf);
4672  return FALSE;
4673  }
4674  n_Delete(&nn, r->cf);
4675  pIter(p1);
4676  pIter(p2);
4677  }
4678  n_Delete(&n, r->cf);
4679  return TRUE;
4680 }
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:753
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff 'a' and 'b' represent the same number; they may have different representations.
Definition: coeffs.h:460
#define pAssume(cond)
Definition: monomials.h:90
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1731

◆ p_Content()

void p_Content ( poly  p,
const ring  r 
)

Definition at line 2291 of file p_polys.cc.

2292 {
2293  if (ph==NULL) return;
2294  const coeffs cf=r->cf;
2295  if (pNext(ph)==NULL)
2296  {
2297  p_SetCoeff(ph,n_Init(1,cf),r);
2298  return;
2299  }
2300  if ((cf->cfSubringGcd==ndGcd)
2301  || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2302  return;
2303  number h;
2304  if ((rField_is_Q(r))
2305  || (rField_is_Q_a(r))
2306  || (rField_is_Zp_a)(r)
2307  || (rField_is_Z(r))
2308  )
2309  {
2310  h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2311  }
2312  else
2313  {
2314  h=n_Copy(pGetCoeff(ph),cf);
2315  }
2316  poly p;
2317  if(n_IsOne(h,cf))
2318  {
2319  goto content_finish;
2320  }
2321  p=ph;
2322  // take the SubringGcd of all coeffs
2323  while (p!=NULL)
2324  {
2326  number d=n_SubringGcd(h,pGetCoeff(p),cf);
2327  n_Delete(&h,cf);
2328  h = d;
2329  if(n_IsOne(h,cf))
2330  {
2331  goto content_finish;
2332  }
2333  pIter(p);
2334  }
2335  // if found<>1, divide by it
2336  p = ph;
2337  while (p!=NULL)
2338  {
2339  number d = n_ExactDiv(pGetCoeff(p),h,cf);
2340  p_SetCoeff(p,d,r);
2341  pIter(p);
2342  }
2343 content_finish:
2344  n_Delete(&h,r->cf);
2345  // and last: check leading sign:
2346  if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2347 }
CanonicalForm cf
Definition: cfModGcd.cc:4083
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition: coeffs.h:622
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition: coeffs.h:666
number ndGcd(number, number, const coeffs r)
Definition: numbers.cc:165
number p_InitContent(poly ph, const ring r)
Definition: p_polys.cc:2700
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:530

◆ p_Content_n()

void p_Content_n ( poly  p,
number &  c,
const ring  r 
)

Definition at line 2349 of file p_polys.cc.

2350 {
2351  const coeffs cf=r->cf;
2352  if (ph==NULL)
2353  {
2354  c=n_Init(1,cf);
2355  return;
2356  }
2357  if (pNext(ph)==NULL)
2358  {
2359  c=pGetCoeff(ph);
2360  p_SetCoeff0(ph,n_Init(1,cf),r);
2361  }
2362  if ((cf->cfSubringGcd==ndGcd)
2363  || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2364  {
2365  c=n_Init(1,r->cf);
2366  return;
2367  }
2368  number h;
2369  if ((rField_is_Q(r))
2370  || (rField_is_Q_a(r))
2371  || (rField_is_Zp_a)(r)
2372  || (rField_is_Z(r))
2373  )
2374  {
2375  h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2376  }
2377  else
2378  {
2379  h=n_Copy(pGetCoeff(ph),cf);
2380  }
2381  poly p;
2382  if(n_IsOne(h,cf))
2383  {
2384  goto content_finish;
2385  }
2386  p=ph;
2387  // take the SubringGcd of all coeffs
2388  while (p!=NULL)
2389  {
2391  number d=n_SubringGcd(h,pGetCoeff(p),cf);
2392  n_Delete(&h,cf);
2393  h = d;
2394  if(n_IsOne(h,cf))
2395  {
2396  goto content_finish;
2397  }
2398  pIter(p);
2399  }
2400  // if found<>1, divide by it
2401  p = ph;
2402  while (p!=NULL)
2403  {
2404  number d = n_ExactDiv(pGetCoeff(p),h,cf);
2405  p_SetCoeff(p,d,r);
2406  pIter(p);
2407  }
2408 content_finish:
2409  c=h;
2410  // and last: check leading sign:
2411  if(!n_GreaterZero(pGetCoeff(ph),r->cf))
2412  {
2413  c = n_InpNeg(c,r->cf);
2414  ph = p_Neg(ph,r);
2415  }
2416 }
#define p_SetCoeff0(p, n, r)
Definition: monomials.h:60

◆ p_ContentForGB()

void p_ContentForGB ( poly  p,
const ring  r 
)

Definition at line 2420 of file p_polys.cc.

2421 {
2422  if(TEST_OPT_CONTENTSB) return;
2423  assume( ph != NULL );
2424 
2425  assume( r != NULL ); assume( r->cf != NULL );
2426 
2427 
2428 #if CLEARENUMERATORS
2429  if( 0 )
2430  {
2431  const coeffs C = r->cf;
2432  // experimentall (recursive enumerator treatment) of alg. Ext!
2433  CPolyCoeffsEnumerator itr(ph);
2434  n_ClearContent(itr, r->cf);
2435 
2436  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2437  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2438 
2439  // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2440  return;
2441  }
2442 #endif
2443 
2444 
2445 #ifdef HAVE_RINGS
2446  if (rField_is_Ring(r))
2447  {
2448  if (rField_has_Units(r))
2449  {
2450  number k = n_GetUnit(pGetCoeff(ph),r->cf);
2451  if (!n_IsOne(k,r->cf))
2452  {
2453  number tmpGMP = k;
2454  k = n_Invers(k,r->cf);
2455  n_Delete(&tmpGMP,r->cf);
2456  poly h = pNext(ph);
2457  p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r);
2458  while (h != NULL)
2459  {
2460  p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r);
2461  pIter(h);
2462  }
2463 // assume( n_GreaterZero(pGetCoeff(ph),r->cf) );
2464 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2465  }
2466  n_Delete(&k,r->cf);
2467  }
2468  return;
2469  }
2470 #endif
2471  number h,d;
2472  poly p;
2473 
2474  if(pNext(ph)==NULL)
2475  {
2476  p_SetCoeff(ph,n_Init(1,r->cf),r);
2477  }
2478  else
2479  {
2480  assume( pNext(ph) != NULL );
2481 #if CLEARENUMERATORS
2482  if( nCoeff_is_Q(r->cf) )
2483  {
2484  // experimentall (recursive enumerator treatment) of alg. Ext!
2485  CPolyCoeffsEnumerator itr(ph);
2486  n_ClearContent(itr, r->cf);
2487 
2488  p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf);
2489  assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ??
2490 
2491  // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2492  return;
2493  }
2494 #endif
2495 
2496  n_Normalize(pGetCoeff(ph),r->cf);
2497  if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2498  if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1
2499  {
2500  h=p_InitContent(ph,r);
2501  p=ph;
2502  }
2503  else
2504  {
2505  h=n_Copy(pGetCoeff(ph),r->cf);
2506  p = pNext(ph);
2507  }
2508  while (p!=NULL)
2509  {
2510  n_Normalize(pGetCoeff(p),r->cf);
2511  d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2512  n_Delete(&h,r->cf);
2513  h = d;
2514  if(n_IsOne(h,r->cf))
2515  {
2516  break;
2517  }
2518  pIter(p);
2519  }
2520  //number tmp;
2521  if(!n_IsOne(h,r->cf))
2522  {
2523  p = ph;
2524  while (p!=NULL)
2525  {
2526  //d = nDiv(pGetCoeff(p),h);
2527  //tmp = nExactDiv(pGetCoeff(p),h);
2528  //if (!nEqual(d,tmp))
2529  //{
2530  // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2531  // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2532  // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2533  //}
2534  //nDelete(&tmp);
2535  d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2536  p_SetCoeff(p,d,r);
2537  pIter(p);
2538  }
2539  }
2540  n_Delete(&h,r->cf);
2541  if (rField_is_Q_a(r))
2542  {
2543  // special handling for alg. ext.:
2544  if (getCoeffType(r->cf)==n_algExt)
2545  {
2546  h = n_Init(1, r->cf->extRing->cf);
2547  p=ph;
2548  while (p!=NULL)
2549  { // each monom: coeff in Q_a
2550  poly c_n_n=(poly)pGetCoeff(p);
2551  poly c_n=c_n_n;
2552  while (c_n!=NULL)
2553  { // each monom: coeff in Q
2554  d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf);
2555  n_Delete(&h,r->cf->extRing->cf);
2556  h=d;
2557  pIter(c_n);
2558  }
2559  pIter(p);
2560  }
2561  /* h contains the 1/lcm of all denominators in c_n_n*/
2562  //n_Normalize(h,r->cf->extRing->cf);
2563  if(!n_IsOne(h,r->cf->extRing->cf))
2564  {
2565  p=ph;
2566  while (p!=NULL)
2567  { // each monom: coeff in Q_a
2568  poly c_n=(poly)pGetCoeff(p);
2569  while (c_n!=NULL)
2570  { // each monom: coeff in Q
2571  d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf);
2572  n_Normalize(d,r->cf->extRing->cf);
2573  n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf);
2574  pGetCoeff(c_n)=d;
2575  pIter(c_n);
2576  }
2577  pIter(p);
2578  }
2579  }
2580  n_Delete(&h,r->cf->extRing->cf);
2581  }
2582  /*else
2583  {
2584  // special handling for rat. functions.:
2585  number hzz =NULL;
2586  p=ph;
2587  while (p!=NULL)
2588  { // each monom: coeff in Q_a (Z_a)
2589  fraction f=(fraction)pGetCoeff(p);
2590  poly c_n=NUM(f);
2591  if (hzz==NULL)
2592  {
2593  hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf);
2594  pIter(c_n);
2595  }
2596  while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf)))
2597  { // each monom: coeff in Q (Z)
2598  d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf);
2599  n_Delete(&hzz,r->cf->extRing->cf);
2600  hzz=d;
2601  pIter(c_n);
2602  }
2603  pIter(p);
2604  }
2605  // hzz contains the gcd of all numerators in f
2606  h=n_Invers(hzz,r->cf->extRing->cf);
2607  n_Delete(&hzz,r->cf->extRing->cf);
2608  n_Normalize(h,r->cf->extRing->cf);
2609  if(!n_IsOne(h,r->cf->extRing->cf))
2610  {
2611  p=ph;
2612  while (p!=NULL)
2613  { // each monom: coeff in Q_a (Z_a)
2614  fraction f=(fraction)pGetCoeff(p);
2615  NUM(f)=__p_Mult_nn(NUM(f),h,r->cf->extRing);
2616  p_Normalize(NUM(f),r->cf->extRing);
2617  pIter(p);
2618  }
2619  }
2620  n_Delete(&h,r->cf->extRing->cf);
2621  }*/
2622  }
2623  }
2624  if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2625 }
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:35
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
in Z: 1 in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that is co-prime with k i...
Definition: coeffs.h:532
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition: coeffs.h:421
static BOOLEAN rField_has_Units(const ring r)
Definition: ring.h:491

◆ p_ContentRat()

void p_ContentRat ( poly &  ph,
const ring  r 
)

Definition at line 1740 of file p_polys.cc.

1743 {
1744  // init array of RatLeadCoeffs
1745  // poly p_GetCoeffRat(poly p, int ishift, ring r);
1746 
1747  int len=pLength(ph);
1748  poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs
1749  poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms
1750  int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs
1751  int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs
1752  int k = 0;
1753  poly p = p_Copy(ph, r); // ph will be needed below
1754  int mintdeg = p_Totaldegree(p, r);
1755  int minlen = len;
1756  int dd = 0; int i;
1757  int HasConstantCoef = 0;
1758  int is = r->real_var_start - 1;
1759  while (p!=NULL)
1760  {
1761  LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat istead of p_HeadRat(p, is, currRing); !
1762  C[k] = p_GetCoeffRat(p, is, r);
1763  D[k] = p_Totaldegree(C[k], r);
1764  mintdeg = si_min(mintdeg,D[k]);
1765  L[k] = pLength(C[k]);
1766  minlen = si_min(minlen,L[k]);
1767  if (p_IsConstant(C[k], r))
1768  {
1769  // C[k] = const, so the content will be numerical
1770  HasConstantCoef = 1;
1771  // smth like goto cleanup and return(pContent(p));
1772  }
1773  p_LmDeleteAndNextRat(&p, is, r);
1774  k++;
1775  }
1776 
1777  // look for 1 element of minimal degree and of minimal length
1778  k--;
1779  poly d;
1780  int mindeglen = len;
1781  if (k<=0) // this poly is not a ratgring poly -> pContent
1782  {
1783  p_Delete(&C[0], r);
1784  p_Delete(&LM[0], r);
1785  p_ContentForGB(ph, r);
1786  goto cleanup;
1787  }
1788 
1789  int pmindeglen;
1790  for(i=0; i<=k; i++)
1791  {
1792  if (D[i] == mintdeg)
1793  {
1794  if (L[i] < mindeglen)
1795  {
1796  mindeglen=L[i];
1797  pmindeglen = i;
1798  }
1799  }
1800  }
1801  d = p_Copy(C[pmindeglen], r);
1802  // there are dd>=1 mindeg elements
1803  // and pmideglen is the coordinate of one of the smallest among them
1804 
1805  // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r));
1806  // return naGcd(d,d2,currRing);
1807 
1808  // adjoin pContentRat here?
1809  for(i=0; i<=k; i++)
1810  {
1811  d=singclap_gcd(d,p_Copy(C[i], r), r);
1812  if (p_Totaldegree(d, r)==0)
1813  {
1814  // cleanup, pContent, return
1815  p_Delete(&d, r);
1816  for(;k>=0;k--)
1817  {
1818  p_Delete(&C[k], r);
1819  p_Delete(&LM[k], r);
1820  }
1821  p_ContentForGB(ph, r);
1822  goto cleanup;
1823  }
1824  }
1825  for(i=0; i<=k; i++)
1826  {
1827  poly h=singclap_pdivide(C[i],d, r);
1828  p_Delete(&C[i], r);
1829  C[i]=h;
1830  }
1831 
1832  // zusammensetzen,
1833  p=NULL; // just to be sure
1834  for(i=0; i<=k; i++)
1835  {
1836  p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r);
1837  C[i]=NULL; LM[i]=NULL;
1838  }
1839  p_Delete(&ph, r); // do not need it anymore
1840  ph = p;
1841  // aufraeumen, return
1842 cleanup:
1843  omFree(C);
1844  omFree(LM);
1845  omFree(D);
1846  omFree(L);
1847 }
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:624
#define D(A)
Definition: gentable.cc:131
#define omFree(addr)
Definition: omAllocDecl.h:261
void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
Definition: p_polys.cc:1696
poly p_GetCoeffRat(poly p, int ishift, ring r)
Definition: p_polys.cc:1718
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:936
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1114
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition: p_polys.h:1372
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:846
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1507
poly singclap_gcd(poly f, poly g, const ring r)
polynomial gcd via singclap_gcd_r resp. idSyzygies destroys f and g
Definition: polys.cc:380

◆ p_Copy() [1/2]

static poly p_Copy ( poly  p,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing

Definition at line 883 of file p_polys.h.

884 {
885  if (p != NULL)
886  {
887 #ifndef PDEBUG
888  if (tailRing == lmRing)
889  return p_Copy_noCheck(p, tailRing);
890 #endif
891  poly pres = p_Head(p, lmRing);
892  if (pNext(p)!=NULL)
893  pNext(pres) = p_Copy_noCheck(pNext(p), tailRing);
894  return pres;
895  }
896  else
897  return NULL;
898 }
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
Definition: p_polys.h:836

◆ p_Copy() [2/2]

static poly p_Copy ( poly  p,
const ring  r 
)
inlinestatic

returns a copy of p

Definition at line 846 of file p_polys.h.

847 {
848  if (p!=NULL)
849  {
850  p_Test(p,r);
851  const poly pp = p_Copy_noCheck(p, r);
852  p_Test(pp,r);
853  return pp;
854  }
855  else
856  return NULL;
857 }
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:676

◆ p_Copy_noCheck()

static poly p_Copy_noCheck ( poly  p,
const ring  r 
)
inlinestatic

returns a copy of p (without any additional testing)

Definition at line 836 of file p_polys.h.

837 {
838  /*assume(p!=NULL);*/
839  assume(r != NULL);
840  assume(r->p_Procs != NULL);
841  assume(r->p_Procs->p_Copy != NULL);
842  return r->p_Procs->p_Copy(p, r);
843 }

◆ p_CopyPowerProduct()

poly p_CopyPowerProduct ( const poly  p,
const ring  r 
)

like p_Head, but with coefficient 1

Definition at line 5056 of file p_polys.cc.

5057 {
5058  if (p == NULL) return NULL;
5059  return p_CopyPowerProduct0(p,n_Init(1,r->cf),r);
5060 }
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition: p_polys.cc:5044

◆ p_CopyPowerProduct0()

poly p_CopyPowerProduct0 ( const poly  p,
const number  n,
const ring  r 
)

like p_Head, but with coefficient n

Definition at line 5044 of file p_polys.cc.

5045 {
5046  p_LmCheckPolyRing1(p, r);
5047  poly np;
5048  omTypeAllocBin(poly, np, r->PolyBin);
5049  p_SetRingOfLm(np, r);
5050  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
5051  pNext(np) = NULL;
5052  pSetCoeff0(np, n);
5053  return np;
5054 }
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:177
#define pSetCoeff0(p, n)
Definition: monomials.h:59
#define p_SetRingOfLm(p, r)
Definition: monomials.h:144
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203

◆ p_DecrExp()

static long p_DecrExp ( poly  p,
int  v,
ring  r 
)
inlinestatic

Definition at line 598 of file p_polys.h.

599 {
600  p_LmCheckPolyRing2(p, r);
601  int e = p_GetExp(p,v,r);
602  pAssume2(e > 0);
603  e--;
604  return p_SetExp(p,v,e,r);
605 }

◆ p_Deg()

long p_Deg ( poly  a,
const ring  r 
)

Definition at line 587 of file p_polys.cc.

588 {
589  p_LmCheckPolyRing(a, r);
590 // assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume!
591  return p_GetOrder(a, r);
592 }
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:120
static long p_GetOrder(poly p, ring r)
Definition: p_polys.h:421

◆ p_DegW()

long p_DegW ( poly  p,
const int *  w,
const ring  R 
)

Definition at line 690 of file p_polys.cc.

691 {
692  p_Test(p, R);
693  assume( w != NULL );
694  long r=-LONG_MAX;
695 
696  while (p!=NULL)
697  {
698  long t=totaldegreeWecart_IV(p,R,w);
699  if (t>r) r=t;
700  pIter(p);
701  }
702  return r;
703 }
const CanonicalForm & w
Definition: facAbsFact.cc:51
long totaldegreeWecart_IV(poly p, ring r, const int *w)
Definition: weight.cc:231

◆ p_Delete() [1/2]

static void p_Delete ( poly *  p,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 908 of file p_polys.h.

909 {
910  assume( p!= NULL );
911  if (*p != NULL)
912  {
913 #ifndef PDEBUG
914  if (tailRing == lmRing)
915  {
916  p_Delete(p, tailRing);
917  return;
918  }
919 #endif
920  if (pNext(*p) != NULL)
921  p_Delete(&pNext(*p), tailRing);
922  p_LmDelete(p, lmRing);
923  }
924 }
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:723

◆ p_Delete() [2/2]

static void p_Delete ( poly *  p,
const ring  r 
)
inlinestatic

Definition at line 901 of file p_polys.h.

902 {
903  assume( p!= NULL );
904  assume( r!= NULL );
905  if ((*p)!=NULL) r->p_Procs->p_Delete(p, r);
906 }

◆ p_DeleteComp()

void p_DeleteComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3622 of file p_polys.cc.

3623 {
3624  poly q;
3625  long unsigned kk=k;
3626 
3627  while ((*p!=NULL) && (__p_GetComp(*p,r)==kk)) p_LmDelete(p,r);
3628  if (*p==NULL) return;
3629  q = *p;
3630  if (__p_GetComp(q,r)>kk)
3631  {
3632  p_SubComp(q,1,r);
3633  p_SetmComp(q,r);
3634  }
3635  while (pNext(q)!=NULL)
3636  {
3637  if (__p_GetComp(pNext(q),r)==kk)
3638  p_LmDelete(&(pNext(q)),r);
3639  else
3640  {
3641  pIter(q);
3642  if (__p_GetComp(q,r)>kk)
3643  {
3644  p_SubComp(q,1,r);
3645  p_SetmComp(q,r);
3646  }
3647  }
3648  }
3649 }
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:453
#define p_SetmComp
Definition: p_polys.h:244

◆ p_Diff()

poly p_Diff ( poly  a,
int  k,
const ring  r 
)

Definition at line 1894 of file p_polys.cc.

1895 {
1896  poly res, f, last;
1897  number t;
1898 
1899  last = res = NULL;
1900  while (a!=NULL)
1901  {
1902  if (p_GetExp(a,k,r)!=0)
1903  {
1904  f = p_LmInit(a,r);
1905  t = n_Init(p_GetExp(a,k,r),r->cf);
1906  pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf));
1907  n_Delete(&t,r->cf);
1908  if (n_IsZero(pGetCoeff(f),r->cf))
1909  p_LmDelete(&f,r);
1910  else
1911  {
1912  p_DecrExp(f,k,r);
1913  p_Setm(f,r);
1914  if (res==NULL)
1915  {
1916  res=last=f;
1917  }
1918  else
1919  {
1920  pNext(last)=f;
1921  last=f;
1922  }
1923  }
1924  }
1925  pIter(a);
1926  }
1927  return res;
1928 }
FILE * f
Definition: checklibs.c:9
STATIC_VAR poly last
Definition: hdegree.cc:1151
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1335
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static long p_DecrExp(poly p, int v, ring r)
Definition: p_polys.h:598

◆ p_DiffOp()

poly p_DiffOp ( poly  a,
poly  b,
BOOLEAN  multiply,
const ring  r 
)

Definition at line 1969 of file p_polys.cc.

1970 {
1971  poly result=NULL;
1972  poly h;
1973  for(;a!=NULL;pIter(a))
1974  {
1975  for(h=b;h!=NULL;pIter(h))
1976  {
1977  result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r);
1978  }
1979  }
1980  return result;
1981 }
return result
Definition: facAbsBiFact.cc:75
static poly p_DiffOpM(poly a, poly b, BOOLEAN multiply, const ring r)
Definition: p_polys.cc:1930

◆ p_Div_mm()

poly p_Div_mm ( poly  p,
const poly  m,
const ring  r 
)

divide polynomial by monomial

Definition at line 1534 of file p_polys.cc.

1535 {
1536  p_Test(p, r);
1537  p_Test(m, r);
1538  poly result = p;
1539  poly prev = NULL;
1540  number n=pGetCoeff(m);
1541  while (p!=NULL)
1542  {
1543  number nc = n_Div(pGetCoeff(p),n,r->cf);
1544  n_Normalize(nc,r->cf);
1545  if (!n_IsZero(nc,r->cf))
1546  {
1547  p_SetCoeff(p,nc,r);
1548  prev=p;
1549  p_ExpVectorSub(p,m,r);
1550  pIter(p);
1551  }
1552  else
1553  {
1554  if (prev==NULL)
1555  {
1556  p_LmDelete(&result,r);
1557  p=result;
1558  }
1559  else
1560  {
1561  p_LmDelete(&pNext(prev),r);
1562  p=pNext(prev);
1563  }
1564  }
1565  }
1566  p_Test(result,r);
1567  return(result);
1568 }
int m
Definition: cfEzgcd.cc:128
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition: p_polys.h:1440

◆ p_Div_nn()

poly p_Div_nn ( poly  p,
const number  n,
const ring  r 
)

Definition at line 1501 of file p_polys.cc.

1502 {
1503  pAssume(!n_IsZero(n,r->cf));
1504  p_Test(p, r);
1505  poly result = p;
1506  poly prev = NULL;
1507  while (p!=NULL)
1508  {
1509  number nc = n_Div(pGetCoeff(p),n,r->cf);
1510  if (!n_IsZero(nc,r->cf))
1511  {
1512  p_SetCoeff(p,nc,r);
1513  prev=p;
1514  pIter(p);
1515  }
1516  else
1517  {
1518  if (prev==NULL)
1519  {
1520  p_LmDelete(&result,r);
1521  p=result;
1522  }
1523  else
1524  {
1525  p_LmDelete(&pNext(prev),r);
1526  p=pNext(prev);
1527  }
1528  }
1529  }
1530  p_Test(result,r);
1531  return(result);
1532 }

◆ p_DivideM()

poly p_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1574 of file p_polys.cc.

1575 {
1576  if (a==NULL) { p_Delete(&b,r); return NULL; }
1577  poly result=a;
1578 
1579  if(!p_IsConstant(b,r))
1580  {
1581  if (rIsNCRing(r))
1582  {
1583  WerrorS("p_DivideM not implemented for non-commuative rings");
1584  return NULL;
1585  }
1586  poly prev=NULL;
1587  while (a!=NULL)
1588  {
1589  if (p_DivisibleBy(b,a,r))
1590  {
1591  p_ExpVectorSub(a,b,r);
1592  prev=a;
1593  pIter(a);
1594  }
1595  else
1596  {
1597  if (prev==NULL)
1598  {
1599  p_LmDelete(&result,r);
1600  a=result;
1601  }
1602  else
1603  {
1604  p_LmDelete(&pNext(prev),r);
1605  a=pNext(prev);
1606  }
1607  }
1608  }
1609  }
1610  if (result!=NULL)
1611  {
1612  number inv=pGetCoeff(b);
1613  //if ((!rField_is_Ring(r)) || n_IsUnit(inv,r->cf))
1614  if (rField_is_Zp(r))
1615  {
1616  inv = n_Invers(inv,r->cf);
1617  __p_Mult_nn(result,inv,r);
1618  n_Delete(&inv, r->cf);
1619  }
1620  else
1621  {
1622  result = p_Div_nn(result,inv,r);
1623  }
1624  }
1625  p_Delete(&b, r);
1626  return result;
1627 }
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1912
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:971
static BOOLEAN rIsNCRing(const ring r)
Definition: ring.h:421

◆ p_DivisibleBy() [1/2]

static BOOLEAN p_DivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1921 of file p_polys.h.

1922 {
1923  pIfThen1(b!=NULL, p_LmCheckPolyRing1(b, r_b));
1924  pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r_a));
1925  if (a != NULL) {
1926  return _p_LmDivisibleBy(a, r_a, b, r_b);
1927  }
1928  return FALSE;
1929 }
#define pIfThen1(cond, check)
Definition: monomials.h:179
static BOOLEAN _p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1877

◆ p_DivisibleBy() [2/2]

static BOOLEAN p_DivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1912 of file p_polys.h.

1913 {
1915  pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r));
1916 
1917  if (a != NULL && (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)))
1918  return _p_LmDivisibleByNoComp(a,b,r);
1919  return FALSE;
1920 }

◆ p_DivisibleByRingCase()

BOOLEAN p_DivisibleByRingCase ( poly  f,
poly  g,
const ring  r 
)

divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account

Definition at line 1638 of file p_polys.cc.

1639 {
1640  int exponent;
1641  for(int i = (int)rVar(r); i>0; i--)
1642  {
1643  exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r);
1644  if (exponent < 0) return FALSE;
1645  }
1646  return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf);
1647 }
g
Definition: cfModGcd.cc:4090
int exponent(const CanonicalForm &f, int q)
int exponent ( const CanonicalForm & f, int q )

◆ p_EqualPolys() [1/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 4577 of file p_polys.cc.

4578 {
4579  while ((p1 != NULL) && (p2 != NULL))
4580  {
4581  if (! p_LmEqual(p1, p2,r))
4582  return FALSE;
4583  if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf ))
4584  return FALSE;
4585  pIter(p1);
4586  pIter(p2);
4587  }
4588  return (p1==p2);
4589 }
#define p_GetCoeff(p, r)
Definition: monomials.h:50

◆ p_EqualPolys() [2/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r1,
const ring  r2 
)

same as the usual p_EqualPolys for polys belonging to equal rings

Definition at line 4615 of file p_polys.cc.

4616 {
4617  assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual!
4618  assume( r1->cf == r2->cf );
4619 
4620  while ((p1 != NULL) && (p2 != NULL))
4621  {
4622  // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
4623  // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
4624 
4625  if (! p_ExpVectorEqual(p1, p2, r1, r2))
4626  return FALSE;
4627 
4628  if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf ))
4629  return FALSE;
4630 
4631  pIter(p1);
4632  pIter(p2);
4633  }
4634  return (p1==p2);
4635 }
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition: ring.cc:1799

◆ p_ExpVectorAdd()

static void p_ExpVectorAdd ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1411 of file p_polys.h.

1412 {
1413  p_LmCheckPolyRing1(p1, r);
1414  p_LmCheckPolyRing1(p2, r);
1415 #if PDEBUG >= 1
1416  for (int i=1; i<=r->N; i++)
1417  pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1418  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1419 #endif
1420 
1421  p_MemAdd_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1422  p_MemAdd_NegWeightAdjust(p1, r);
1423 }
#define p_MemAdd_LengthGeneral(r, s, length)
Definition: p_MemAdd.h:173
static void p_MemAdd_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1292

◆ p_ExpVectorAddSub()

static void p_ExpVectorAddSub ( poly  p1,
poly  p2,
poly  p3,
const ring  r 
)
inlinestatic

Definition at line 1456 of file p_polys.h.

1457 {
1458  p_LmCheckPolyRing1(p1, r);
1459  p_LmCheckPolyRing1(p2, r);
1460  p_LmCheckPolyRing1(p3, r);
1461 #if PDEBUG >= 1
1462  for (int i=1; i<=r->N; i++)
1463  pAssume1(p_GetExp(p1, i, r) + p_GetExp(p2, i, r) >= p_GetExp(p3, i, r));
1464  pAssume1(p_GetComp(p1, r) == 0 ||
1465  (p_GetComp(p2, r) - p_GetComp(p3, r) == 0) ||
1466  (p_GetComp(p1, r) == p_GetComp(p2, r) - p_GetComp(p3, r)));
1467 #endif
1468 
1469  p_MemAddSub_LengthGeneral(p1->exp, p2->exp, p3->exp, r->ExpL_Size);
1470  // no need to adjust in case of NegWeights
1471 }
#define p_MemAddSub_LengthGeneral(r, s, t, length)
Definition: p_MemAdd.h:312

◆ p_ExpVectorCopy()

static void p_ExpVectorCopy ( poly  d_p,
poly  s_p,
const ring  r 
)
inlinestatic

Definition at line 1313 of file p_polys.h.

1314 {
1315  p_LmCheckPolyRing1(d_p, r);
1316  p_LmCheckPolyRing1(s_p, r);
1317  memcpy(d_p->exp, s_p->exp, r->ExpL_Size*sizeof(long));
1318 }

◆ p_ExpVectorDiff()

static void p_ExpVectorDiff ( poly  pr,
poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1474 of file p_polys.h.

1475 {
1476  p_LmCheckPolyRing1(p1, r);
1477  p_LmCheckPolyRing1(p2, r);
1478  p_LmCheckPolyRing1(pr, r);
1479 #if PDEBUG >= 2
1480  for (int i=1; i<=r->N; i++)
1481  pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1482  pAssume1(!rRing_has_Comp(r) || p_GetComp(p1, r) == p_GetComp(p2, r));
1483 #endif
1484 
1485  p_MemDiff_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1486  p_MemSub_NegWeightAdjust(pr, r);
1487 }
#define p_MemDiff_LengthGeneral(r, s1, s2, length)
Definition: p_MemAdd.h:262
static void p_MemSub_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1302

◆ p_ExpVectorEqual()

static BOOLEAN p_ExpVectorEqual ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1489 of file p_polys.h.

1490 {
1491  p_LmCheckPolyRing1(p1, r);
1492  p_LmCheckPolyRing1(p2, r);
1493 
1494  unsigned i = r->ExpL_Size;
1495  unsigned long *ep = p1->exp;
1496  unsigned long *eq = p2->exp;
1497 
1498  do
1499  {
1500  i--;
1501  if (ep[i] != eq[i]) return FALSE;
1502  }
1503  while (i!=0);
1504  return TRUE;
1505 }

◆ p_ExpVectorSub()

static void p_ExpVectorSub ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1440 of file p_polys.h.

1441 {
1442  p_LmCheckPolyRing1(p1, r);
1443  p_LmCheckPolyRing1(p2, r);
1444 #if PDEBUG >= 1
1445  for (int i=1; i<=r->N; i++)
1446  pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1447  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0 ||
1448  p_GetComp(p1, r) == p_GetComp(p2, r));
1449 #endif
1450 
1451  p_MemSub_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1452  p_MemSub_NegWeightAdjust(p1, r);
1453 }
#define p_MemSub_LengthGeneral(r, s, length)
Definition: p_MemAdd.h:291

◆ p_ExpVectorSum()

static void p_ExpVectorSum ( poly  pr,
poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1425 of file p_polys.h.

1426 {
1427  p_LmCheckPolyRing1(p1, r);
1428  p_LmCheckPolyRing1(p2, r);
1429  p_LmCheckPolyRing1(pr, r);
1430 #if PDEBUG >= 1
1431  for (int i=1; i<=r->N; i++)
1432  pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1433  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1434 #endif
1435 
1436  p_MemSum_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1437  p_MemAdd_NegWeightAdjust(pr, r);
1438 }
#define p_MemSum_LengthGeneral(r, s1, s2, length)
Definition: p_MemAdd.h:86

◆ p_Farey()

poly p_Farey ( poly  p,
number  N,
const ring  r 
)

Definition at line 54 of file p_polys.cc.

55 {
56  poly h=p_Copy(p,r);
57  poly hh=h;
58  while(h!=NULL)
59  {
60  number c=pGetCoeff(h);
61  pSetCoeff0(h,n_Farey(c,N,r->cf));
62  n_Delete(&c,r->cf);
63  pIter(h);
64  }
65  while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf)))
66  {
67  p_LmDelete(&hh,r);
68  }
69  h=hh;
70  while((h!=NULL) && (pNext(h)!=NULL))
71  {
72  if(n_IsZero(pGetCoeff(pNext(h)),r->cf))
73  {
74  p_LmDelete(&pNext(h),r);
75  }
76  else pIter(h);
77  }
78  return hh;
79 }
static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
Definition: coeffs.h:767

◆ p_FDeg()

static long p_FDeg ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 380 of file p_polys.h.

380 { return r->pFDeg(p,r); }

◆ p_GcdMon()

poly p_GcdMon ( poly  f,
poly  g,
const ring  r 
)

polynomial gcd for f=mon

Definition at line 5006 of file p_polys.cc.

5007 {
5008  assume(f!=NULL);
5009  assume(g!=NULL);
5010  assume(pNext(f)==NULL);
5011  poly G=p_Head(f,r);
5012  poly h=g;
5013  int *mf=(int*)omAlloc((r->N+1)*sizeof(int));
5014  p_GetExpV(f,mf,r);
5015  int *mh=(int*)omAlloc((r->N+1)*sizeof(int));
5016  BOOLEAN const_mon;
5017  BOOLEAN one_coeff=n_IsOne(pGetCoeff(G),r->cf);
5018  loop
5019  {
5020  if (h==NULL) break;
5021  if(!one_coeff)
5022  {
5023  number n=n_SubringGcd(pGetCoeff(G),pGetCoeff(h),r->cf);
5024  one_coeff=n_IsOne(n,r->cf);
5025  p_SetCoeff(G,n,r);
5026  }
5027  p_GetExpV(h,mh,r);
5028  const_mon=TRUE;
5029  for(unsigned j=r->N;j!=0;j--)
5030  {
5031  if (mh[j]<mf[j]) mf[j]=mh[j];
5032  if (mf[j]>0) const_mon=FALSE;
5033  }
5034  if (one_coeff && const_mon) break;
5035  pIter(h);
5036  }
5037  mf[0]=0;
5038  p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm
5039  omFreeSize(mf,(r->N+1)*sizeof(int));
5040  omFreeSize(mh,(r->N+1)*sizeof(int));
5041  return G;
5042 }
STATIC_VAR TreeM * G
Definition: janet.cc:31
#define omAlloc(size)
Definition: omAllocDecl.h:210
static void p_SetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1544
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1520

◆ p_GetCoeffRat()

poly p_GetCoeffRat ( poly  p,
int  ishift,
ring  r 
)

Definition at line 1718 of file p_polys.cc.

1719 {
1720  poly q = pNext(p);
1721  poly res; // = p_Head(p,r);
1722  res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally
1723  p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r);
1724  poly s;
1725  long cmp = p_GetComp(p, r);
1726  while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) )
1727  {
1728  s = p_GetExp_k_n(q, ishift+1, r->N, r);
1729  p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r);
1730  res = p_Add_q(res,s,r);
1731  q = pNext(q);
1732  }
1733  cmp = 0;
1734  p_SetCompP(res,cmp,r);
1735  return res;
1736 }
const CanonicalForm int s
Definition: facAbsFact.cc:51
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition: p_polys.h:640
static void p_SetCompP(poly p, int i, ring r)
Definition: p_polys.h:254

◆ p_GetExp() [1/3]

static long p_GetExp ( const poly  p,
const int  v,
const ring  r 
)
inlinestatic

get v^th exponent for a monomial

Definition at line 572 of file p_polys.h.

573 {
574  p_LmCheckPolyRing2(p, r);
575  pAssume2(v>0 && v <= r->N);
576  pAssume2(r->VarOffset[v] != -1);
577  return p_GetExp(p, r->bitmask, r->VarOffset[v]);
578 }

◆ p_GetExp() [2/3]

static long p_GetExp ( const poly  p,
const ring  r,
const int  VarOffset 
)
inlinestatic

Definition at line 555 of file p_polys.h.

556 {
557  p_LmCheckPolyRing2(p, r);
558  pAssume2(VarOffset != -1);
559  return p_GetExp(p, r->bitmask, VarOffset);
560 }

◆ p_GetExp() [3/3]

static long p_GetExp ( const poly  p,
const unsigned long  iBitmask,
const int  VarOffset 
)
inlinestatic

get a single variable exponent @Note: the integer VarOffset encodes:

  1. the position of a variable in the exponent vector p->exp (lower 24 bits)
  2. number of bits to shift to the right in the upper 8 bits (which takes at most 6 bits for 64 bit) Thus VarOffset always has 2 zero higher bits!

Definition at line 469 of file p_polys.h.

470 {
471  pAssume2((VarOffset >> (24 + 6)) == 0);
472 #if 0
473  int pos=(VarOffset & 0xffffff);
474  int bitpos=(VarOffset >> 24);
475  unsigned long exp=(p->exp[pos] >> bitmask) & iBitmask;
476  return exp;
477 #else
478  return (long)
479  ((p->exp[(VarOffset & 0xffffff)] >> (VarOffset >> 24))
480  & iBitmask);
481 #endif
482 }
gmp_float exp(const gmp_float &a)
Definition: mpr_complex.cc:357

◆ p_GetExp_k_n()

static poly p_GetExp_k_n ( poly  p,
int  l,
int  k,
const ring  r 
)
inlinestatic

Definition at line 1372 of file p_polys.h.

1373 {
1374  if (p == NULL) return NULL;
1375  p_LmCheckPolyRing1(p, r);
1376  poly np;
1377  omTypeAllocBin(poly, np, r->PolyBin);
1378  p_SetRingOfLm(np, r);
1379  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1380  pNext(np) = NULL;
1381  pSetCoeff0(np, n_Init(1, r->cf));
1382  int i;
1383  for(i=l;i<=k;i++)
1384  {
1385  //np->exp[(r->VarOffset[i] & 0xffffff)] =0;
1386  p_SetExp(np,i,0,r);
1387  }
1388  p_Setm(np,r);
1389  return np;
1390 }

◆ p_GetExpDiff()

static long p_GetExpDiff ( poly  p1,
poly  p2,
int  i,
ring  r 
)
inlinestatic

Definition at line 635 of file p_polys.h.

636 {
637  return p_GetExp(p1,i,r) - p_GetExp(p2,i,r);
638 }

◆ p_GetExpSum()

static long p_GetExpSum ( poly  p1,
poly  p2,
int  i,
ring  r 
)
inlinestatic

Definition at line 629 of file p_polys.h.

630 {
631  p_LmCheckPolyRing2(p1, r);
632  p_LmCheckPolyRing2(p2, r);
633  return p_GetExp(p1,i,r) + p_GetExp(p2,i,r);
634 }

◆ p_GetExpV()

static void p_GetExpV ( poly  p,
int *  ev,
const ring  r 
)
inlinestatic

Definition at line 1520 of file p_polys.h.

1521 {
1522  p_LmCheckPolyRing1(p, r);
1523  for (unsigned j = r->N; j!=0; j--)
1524  ev[j] = p_GetExp(p, j, r);
1525 
1526  ev[0] = p_GetComp(p, r);
1527 }

◆ p_GetExpVL()

static void p_GetExpVL ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1529 of file p_polys.h.

1530 {
1531  p_LmCheckPolyRing1(p, r);
1532  for (unsigned j = r->N; j!=0; j--)
1533  ev[j-1] = p_GetExp(p, j, r);
1534 }

◆ p_GetExpVLV()

static int64 p_GetExpVLV ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1536 of file p_polys.h.

1537 {
1538  p_LmCheckPolyRing1(p, r);
1539  for (unsigned j = r->N; j!=0; j--)
1540  ev[j-1] = p_GetExp(p, j, r);
1541  return (int64)p_GetComp(p,r);
1542 }
long int64
Definition: auxiliary.h:68

◆ p_GetMaxExp() [1/2]

static unsigned long p_GetMaxExp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 804 of file p_polys.h.

805 {
806  return p_GetMaxExp(p_GetMaxExpL(p, r), r);
807 }
static unsigned long p_GetMaxExp(const unsigned long l, const ring r)
Definition: p_polys.h:781
unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max=0)
return the maximal exponent of p in form of the maximal long var
Definition: p_polys.cc:1175

◆ p_GetMaxExp() [2/2]

static unsigned long p_GetMaxExp ( const unsigned long  l,
const ring  r 
)
inlinestatic

Definition at line 781 of file p_polys.h.

782 {
783  unsigned long bitmask = r->bitmask;
784  unsigned long max = (l & bitmask);
785  unsigned long j = r->ExpPerLong - 1;
786 
787  if (j > 0)
788  {
789  unsigned long i = r->BitsPerExp;
790  long e;
791  loop
792  {
793  e = ((l >> i) & bitmask);
794  if ((unsigned long) e > max)
795  max = e;
796  j--;
797  if (j==0) break;
798  i += r->BitsPerExp;
799  }
800  }
801  return max;
802 }
static int max(int a, int b)
Definition: fast_mult.cc:264

◆ p_GetMaxExpL()

unsigned long p_GetMaxExpL ( poly  p,
const ring  r,
unsigned long  l_max = 0 
)

return the maximal exponent of p in form of the maximal long var

Definition at line 1175 of file p_polys.cc.

1176 {
1177  unsigned long l_p, divmask = r->divmask;
1178  int i;
1179 
1180  while (p != NULL)
1181  {
1182  l_p = p->exp[r->VarL_Offset[0]];
1183  if (l_p > l_max ||
1184  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1185  l_max = p_GetMaxExpL2(l_max, l_p, r);
1186  for (i=1; i<r->VarL_Size; i++)
1187  {
1188  l_p = p->exp[r->VarL_Offset[i]];
1189  // do the divisibility trick to find out whether l has an exponent
1190  if (l_p > l_max ||
1191  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1192  l_max = p_GetMaxExpL2(l_max, l_p, r);
1193  }
1194  pIter(p);
1195  }
1196  return l_max;
1197 }
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition: p_polys.cc:1107

◆ p_GetMaxExpP()

poly p_GetMaxExpP ( poly  p,
ring  r 
)

return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set

Definition at line 1138 of file p_polys.cc.

1139 {
1140  p_CheckPolyRing(p, r);
1141  if (p == NULL) return p_Init(r);
1142  poly max = p_LmInit(p, r);
1143  pIter(p);
1144  if (p == NULL) return max;
1145  int i, offset;
1146  unsigned long l_p, l_max;
1147  unsigned long divmask = r->divmask;
1148 
1149  do
1150  {
1151  offset = r->VarL_Offset[0];
1152  l_p = p->exp[offset];
1153  l_max = max->exp[offset];
1154  // do the divisibility trick to find out whether l has an exponent
1155  if (l_p > l_max ||
1156  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1157  max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1158 
1159  for (i=1; i<r->VarL_Size; i++)
1160  {
1161  offset = r->VarL_Offset[i];
1162  l_p = p->exp[offset];
1163  l_max = max->exp[offset];
1164  // do the divisibility trick to find out whether l has an exponent
1165  if (l_p > l_max ||
1166  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1167  max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1168  }
1169  pIter(p);
1170  }
1171  while (p != NULL);
1172  return max;
1173 }
STATIC_VAR int offset
Definition: janet.cc:29
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:112
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1320

◆ p_GetOrder()

static long p_GetOrder ( poly  p,
ring  r 
)
inlinestatic

Definition at line 421 of file p_polys.h.

422 {
423  p_LmCheckPolyRing2(p, r);
424  if (r->typ==NULL) return ((p)->exp[r->pOrdIndex]);
425  int i=0;
426  loop
427  {
428  switch(r->typ[i].ord_typ)
429  {
430  case ro_am:
431  case ro_wp_neg:
432  return ((p->exp[r->pOrdIndex])-POLY_NEGWEIGHT_OFFSET);
433  case ro_syzcomp:
434  case ro_syz:
435  case ro_cp:
436  i++;
437  break;
438  //case ro_dp:
439  //case ro_wp:
440  default:
441  return ((p)->exp[r->pOrdIndex]);
442  }
443  }
444 }
#define POLY_NEGWEIGHT_OFFSET
Definition: monomials.h:236
@ ro_syz
Definition: ring.h:60
@ ro_cp
Definition: ring.h:58
@ ro_wp_neg
Definition: ring.h:56
@ ro_am
Definition: ring.h:54

◆ p_GetSetmProc()

p_SetmProc p_GetSetmProc ( const ring  r)

Definition at line 560 of file p_polys.cc.

561 {
562  // covers lp, rp, ls,
563  if (r->typ == NULL) return p_Setm_Dummy;
564 
565  if (r->OrdSize == 1)
566  {
567  if (r->typ[0].ord_typ == ro_dp &&
568  r->typ[0].data.dp.start == 1 &&
569  r->typ[0].data.dp.end == r->N &&
570  r->typ[0].data.dp.place == r->pOrdIndex)
571  return p_Setm_TotalDegree;
572  if (r->typ[0].ord_typ == ro_wp &&
573  r->typ[0].data.wp.start == 1 &&
574  r->typ[0].data.wp.end == r->N &&
575  r->typ[0].data.wp.place == r->pOrdIndex &&
576  r->typ[0].data.wp.weights == r->firstwv)
578  }
579  return p_Setm_General;
580 }
void p_Setm_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:554
void p_Setm_Dummy(poly p, const ring r)
Definition: p_polys.cc:541
void p_Setm_TotalDegree(poly p, const ring r)
Definition: p_polys.cc:547
void p_Setm_General(poly p, const ring r)
Definition: p_polys.cc:158
@ ro_dp
Definition: ring.h:52
@ ro_wp
Definition: ring.h:53

◆ p_GetShortExpVector() [1/2]

unsigned long p_GetShortExpVector ( const poly  a,
const ring  r 
)

Definition at line 4846 of file p_polys.cc.

4847 {
4848  assume(p != NULL);
4849  unsigned long ev = 0; // short exponent vector
4850  unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4851  unsigned int m1; // highest bit which is filled with (n+1)
4852  unsigned int i=0;
4853  int j=1;
4854 
4855  if (n == 0)
4856  {
4857  if (r->N <2*BIT_SIZEOF_LONG)
4858  {
4859  n=1;
4860  m1=0;
4861  }
4862  else
4863  {
4864  for (; j<=r->N; j++)
4865  {
4866  if (p_GetExp(p,j,r) > 0) i++;
4867  if (i == BIT_SIZEOF_LONG) break;
4868  }
4869  if (i>0)
4870  ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4871  return ev;
4872  }
4873  }
4874  else
4875  {
4876  m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4877  }
4878 
4879  n++;
4880  while (i<m1)
4881  {
4882  ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4883  i += n;
4884  j++;
4885  }
4886 
4887  n--;
4888  while (i<BIT_SIZEOF_LONG)
4889  {
4890  ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4891  i += n;
4892  j++;
4893  }
4894  return ev;
4895 }
#define BIT_SIZEOF_LONG
Definition: auxiliary.h:80
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition: p_polys.cc:4813

◆ p_GetShortExpVector() [2/2]

unsigned long p_GetShortExpVector ( const poly  p,
const poly  pp,
const ring  r 
)

p_GetShortExpVector of p * pp

Definition at line 4899 of file p_polys.cc.

4900 {
4901  assume(p != NULL);
4902  assume(pp != NULL);
4903 
4904  unsigned long ev = 0; // short exponent vector
4905  unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4906  unsigned int m1; // highest bit which is filled with (n+1)
4907  int j=1;
4908  unsigned long i = 0L;
4909 
4910  if (n == 0)
4911  {
4912  if (r->N <2*BIT_SIZEOF_LONG)
4913  {
4914  n=1;
4915  m1=0;
4916  }
4917  else
4918  {
4919  for (; j<=r->N; j++)
4920  {
4921  if (p_GetExp(p,j,r) > 0 || p_GetExp(pp,j,r) > 0) i++;
4922  if (i == BIT_SIZEOF_LONG) break;
4923  }
4924  if (i>0)
4925  ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4926  return ev;
4927  }
4928  }
4929  else
4930  {
4931  m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4932  }
4933 
4934  n++;
4935  while (i<m1)
4936  {
4937  ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4938  i += n;
4939  j++;
4940  }
4941 
4942  n--;
4943  while (i<BIT_SIZEOF_LONG)
4944  {
4945  ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4946  i += n;
4947  j++;
4948  }
4949  return ev;
4950 }

◆ p_GetTotalDegree()

static unsigned long p_GetTotalDegree ( const unsigned long  l,
const ring  r,
const int  number_of_exps 
)
inlinestatic

Definition at line 810 of file p_polys.h.

811 {
812  const unsigned long bitmask = r->bitmask;
813  unsigned long sum = (l & bitmask);
814  unsigned long j = number_of_exps - 1;
815 
816  if (j > 0)
817  {
818  unsigned long i = r->BitsPerExp;
819  loop
820  {
821  sum += ((l >> i) & bitmask);
822  j--;
823  if (j==0) break;
824  i += r->BitsPerExp;
825  }
826  }
827  return sum;
828 }

◆ p_GetVariables()

int p_GetVariables ( poly  p,
int *  e,
const ring  r 
)

set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)

Definition at line 1267 of file p_polys.cc.

1268 {
1269  int i;
1270  int n=0;
1271  while(p!=NULL)
1272  {
1273  n=0;
1274  for(i=r->N; i>0; i--)
1275  {
1276  if(e[i]==0)
1277  {
1278  if (p_GetExp(p,i,r)>0)
1279  {
1280  e[i]=1;
1281  n++;
1282  }
1283  }
1284  else
1285  n++;
1286  }
1287  if (n==r->N) break;
1288  pIter(p);
1289  }
1290  return n;
1291 }

◆ p_HasNotCF()

BOOLEAN p_HasNotCF ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1329 of file p_polys.cc.

1330 {
1331 
1332  if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1333  return FALSE;
1334  int i = rVar(r);
1335  loop
1336  {
1337  if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1338  return FALSE;
1339  i--;
1340  if (i == 0)
1341  return TRUE;
1342  }
1343 }

◆ p_HasNotCFRing()

BOOLEAN p_HasNotCFRing ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1345 of file p_polys.cc.

1346 {
1347 
1348  if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1349  return FALSE;
1350  int i = rVar(r);
1351  loop
1352  {
1353  if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1354  return FALSE;
1355  i--;
1356  if (i == 0) {
1357  if (n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf) ||
1358  n_DivBy(pGetCoeff(p2), pGetCoeff(p1), r->cf)) {
1359  return FALSE;
1360  } else {
1361  return TRUE;
1362  }
1363  }
1364  }
1365 }

◆ p_Head()

static poly p_Head ( const poly  p,
const ring  r 
)
inlinestatic

copy the (leading) term of p

Definition at line 860 of file p_polys.h.

861 {
862  if (p == NULL) return NULL;
863  p_LmCheckPolyRing1(p, r);
864  poly np;
865  omTypeAllocBin(poly, np, r->PolyBin);
866  p_SetRingOfLm(np, r);
867  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
868  pNext(np) = NULL;
869  pSetCoeff0(np, n_Copy(pGetCoeff(p), r->cf));
870  return np;
871 }

◆ p_Head0()

poly p_Head0 ( const poly  p,
const ring  r 
)

like p_Head, but allow NULL coeff

Definition at line 5062 of file p_polys.cc.

5063 {
5064  if (p==NULL) return NULL;
5065  if (pGetCoeff(p)==NULL) return p_CopyPowerProduct0(p,NULL,r);
5066  return p_Head(p,r);
5067 }

◆ p_Homogen()

poly p_Homogen ( poly  p,
int  varnum,
const ring  r 
)

Definition at line 3335 of file p_polys.cc.

3336 {
3337  pFDegProc deg;
3338  if (r->pLexOrder && (r->order[0]==ringorder_lp))
3339  deg=p_Totaldegree;
3340  else
3341  deg=r->pFDeg;
3342 
3343  poly q=NULL, qn;
3344  int o,ii;
3345  sBucket_pt bp;
3346 
3347  if (p!=NULL)
3348  {
3349  if ((varnum < 1) || (varnum > rVar(r)))
3350  {
3351  return NULL;
3352  }
3353  o=deg(p,r);
3354  q=pNext(p);
3355  while (q != NULL)
3356  {
3357  ii=deg(q,r);
3358  if (ii>o) o=ii;
3359  pIter(q);
3360  }
3361  q = p_Copy(p,r);
3362  bp = sBucketCreate(r);
3363  while (q != NULL)
3364  {
3365  ii = o-deg(q,r);
3366  if (ii!=0)
3367  {
3368  p_AddExp(q,varnum, (long)ii,r);
3369  p_Setm(q,r);
3370  }
3371  qn = pNext(q);
3372  pNext(q) = NULL;
3373  sBucket_Add_m(bp, q);
3374  q = qn;
3375  }
3376  sBucketDestroyAdd(bp, &q, &ii);
3377  }
3378  return q;
3379 }
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:606
long(* pFDegProc)(poly p, ring r)
Definition: ring.h:38
@ ringorder_lp
Definition: ring.h:77
void sBucket_Add_m(sBucket_pt bucket, poly p)
Definition: sbuckets.cc:173
sBucket_pt sBucketCreate(const ring r)
Definition: sbuckets.cc:96
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition: sbuckets.h:68

◆ p_IncrExp()

static long p_IncrExp ( poly  p,
int  v,
ring  r 
)
inlinestatic

Definition at line 591 of file p_polys.h.

592 {
593  p_LmCheckPolyRing2(p, r);
594  int e = p_GetExp(p,v,r);
595  e++;
596  return p_SetExp(p,v,e,r);
597 }

◆ p_Init() [1/2]

static poly p_Init ( const ring  r)
inlinestatic

Definition at line 1330 of file p_polys.h.

1331 {
1332  return p_Init(r, r->PolyBin);
1333 }

◆ p_Init() [2/2]

static poly p_Init ( const ring  r,
omBin  bin 
)
inlinestatic

Definition at line 1320 of file p_polys.h.

1321 {
1322  p_CheckRing1(r);
1323  pAssume1(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
1324  poly p;
1325  omTypeAlloc0Bin(poly, p, bin);
1327  p_SetRingOfLm(p, r);
1328  return p;
1329 }
#define p_CheckRing1(r)
Definition: monomials.h:178
#define omTypeAlloc0Bin(type, addr, bin)
Definition: omAllocDecl.h:204

◆ p_InitContent()

number p_InitContent ( poly  ph,
const ring  r 
)

Definition at line 2700 of file p_polys.cc.

2703 {
2705  assume(ph!=NULL);
2706  assume(pNext(ph)!=NULL);
2707  assume(rField_is_Q(r));
2708  if (pNext(pNext(ph))==NULL)
2709  {
2710  return n_GetNumerator(pGetCoeff(pNext(ph)),r->cf);
2711  }
2712  poly p=ph;
2713  number n1=n_GetNumerator(pGetCoeff(p),r->cf);
2714  pIter(p);
2715  number n2=n_GetNumerator(pGetCoeff(p),r->cf);
2716  pIter(p);
2717  number d;
2718  number t;
2719  loop
2720  {
2721  nlNormalize(pGetCoeff(p),r->cf);
2722  t=n_GetNumerator(pGetCoeff(p),r->cf);
2723  if (nlGreaterZero(t,r->cf))
2724  d=nlAdd(n1,t,r->cf);
2725  else
2726  d=nlSub(n1,t,r->cf);
2727  nlDelete(&t,r->cf);
2728  nlDelete(&n1,r->cf);
2729  n1=d;
2730  pIter(p);
2731  if (p==NULL) break;
2732  nlNormalize(pGetCoeff(p),r->cf);
2733  t=n_GetNumerator(pGetCoeff(p),r->cf);
2734  if (nlGreaterZero(t,r->cf))
2735  d=nlAdd(n2,t,r->cf);
2736  else
2737  d=nlSub(n2,t,r->cf);
2738  nlDelete(&t,r->cf);
2739  nlDelete(&n2,r->cf);
2740  n2=d;
2741  pIter(p);
2742  if (p==NULL) break;
2743  }
2744  d=nlGcd(n1,n2,r->cf);
2745  nlDelete(&n1,r->cf);
2746  nlDelete(&n2,r->cf);
2747  return d;
2748 }
2749 #else
2750 {
2751  /* ph has al least 2 terms */
2752  number d=pGetCoeff(ph);
2753  int s=n_Size(d,r->cf);
2754  pIter(ph);
2755  number d2=pGetCoeff(ph);
2756  int s2=n_Size(d2,r->cf);
2757  pIter(ph);
2758  if (ph==NULL)
2759  {
2760  if (s<s2) return n_Copy(d,r->cf);
2761  else return n_Copy(d2,r->cf);
2762  }
2763  do
2764  {
2765  number nd=pGetCoeff(ph);
2766  int ns=n_Size(nd,r->cf);
2767  if (ns<=2)
2768  {
2769  s2=s;
2770  d2=d;
2771  d=nd;
2772  s=ns;
2773  break;
2774  }
2775  else if (ns<s)
2776  {
2777  s2=s;
2778  d2=d;
2779  d=nd;
2780  s=ns;
2781  }
2782  pIter(ph);
2783  }
2784  while(ph!=NULL);
2785  return n_SubringGcd(d,d2,r->cf);
2786 }
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:570
static FORCE_INLINE number n_GetNumerator(number &n, const coeffs r)
return the numerator of n (if elements of r are by nature not fractional, result is n)
Definition: coeffs.h:608
LINLINE number nlAdd(number la, number li, const coeffs r)
Definition: longrat.cc:2701
LINLINE number nlSub(number la, number li, const coeffs r)
Definition: longrat.cc:2767
LINLINE void nlDelete(number *a, const coeffs r)
Definition: longrat.cc:2666
BOOLEAN nlGreaterZero(number za, const coeffs r)
Definition: longrat.cc:1308
number nlGcd(number a, number b, const coeffs r)
Definition: longrat.cc:1345
void nlNormalize(number &x, const coeffs r)
Definition: longrat.cc:1486

◆ p_IsConstant()

static BOOLEAN p_IsConstant ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 2011 of file p_polys.h.

2012 {
2013  if (p == NULL) return TRUE;
2014  return (pNext(p)==NULL) && p_LmIsConstant(p, r);
2015 }
static BOOLEAN p_LmIsConstant(const poly p, const ring r)
Definition: p_polys.h:1023

◆ p_IsConstantComp()

static BOOLEAN p_IsConstantComp ( const poly  p,
const ring  r 
)
inlinestatic

like the respective p_LmIs* routines, except that p might be empty

Definition at line 2005 of file p_polys.h.

2006 {
2007  if (p == NULL) return TRUE;
2008  return (pNext(p)==NULL) && p_LmIsConstantComp(p, r);
2009 }
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:1006

◆ p_IsConstantPoly()

static BOOLEAN p_IsConstantPoly ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 2025 of file p_polys.h.

2026 {
2027  p_Test(p, r);
2028  poly pp=p;
2029  while(pp!=NULL)
2030  {
2031  if (! p_LmIsConstantComp(pp, r))
2032  return FALSE;
2033  pIter(pp);
2034  }
2035  return TRUE;
2036 }

◆ p_ISet()

poly p_ISet ( long  i,
const ring  r 
)

returns the poly representing the integer i

Definition at line 1297 of file p_polys.cc.

1298 {
1299  poly rc = NULL;
1300  if (i!=0)
1301  {
1302  rc = p_Init(r);
1303  pSetCoeff0(rc,n_Init(i,r->cf));
1304  if (n_IsZero(pGetCoeff(rc),r->cf))
1305  p_LmDelete(&rc,r);
1306  }
1307  return rc;
1308 }

◆ p_IsHomogeneous()

BOOLEAN p_IsHomogeneous ( poly  p,
const ring  r 
)

Definition at line 3384 of file p_polys.cc.

3385 {
3386  poly qp=p;
3387  int o;
3388 
3389  if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3390  pFDegProc d;
3391  if (r->pLexOrder && (r->order[0]==ringorder_lp))
3392  d=p_Totaldegree;
3393  else
3394  d=r->pFDeg;
3395  o = d(p,r);
3396  do
3397  {
3398  if (d(qp,r) != o) return FALSE;
3399  pIter(qp);
3400  }
3401  while (qp != NULL);
3402  return TRUE;
3403 }

◆ p_IsOne()

static BOOLEAN p_IsOne ( const poly  p,
const ring  R 
)
inlinestatic

either poly(1) or gen(k)?!

Definition at line 2018 of file p_polys.h.

2019 {
2020  if (p == NULL) return FALSE; /* TODO check if 0 == 1 */
2021  p_Test(p, R);
2022  return (p_IsConstant(p, R) && n_IsOne(p_GetCoeff(p, R), R->cf));
2023 }

◆ p_IsPurePower()

int p_IsPurePower ( const poly  p,
const ring  r 
)

return i, if head depends only on var(i)

Definition at line 1226 of file p_polys.cc.

1227 {
1228  int i,k=0;
1229 
1230  for (i=r->N;i;i--)
1231  {
1232  if (p_GetExp(p,i, r)!=0)
1233  {
1234  if(k!=0) return 0;
1235  k=i;
1236  }
1237  }
1238  return k;
1239 }

◆ p_IsUnit()

static BOOLEAN p_IsUnit ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 2038 of file p_polys.h.

2039 {
2040  if (p == NULL) return FALSE;
2041  if (rField_is_Ring(r))
2042  return (p_LmIsConstant(p, r) && n_IsUnit(pGetCoeff(p),r->cf));
2043  return p_LmIsConstant(p, r);
2044 }
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:515

◆ p_IsUnivariate()

int p_IsUnivariate ( poly  p,
const ring  r 
)

return i, if poly depends only on var(i)

Definition at line 1247 of file p_polys.cc.

1248 {
1249  int i,k=-1;
1250 
1251  while (p!=NULL)
1252  {
1253  for (i=r->N;i;i--)
1254  {
1255  if (p_GetExp(p,i, r)!=0)
1256  {
1257  if((k!=-1)&&(k!=i)) return 0;
1258  k=i;
1259  }
1260  }
1261  pIter(p);
1262  }
1263  return k;
1264 }

◆ p_Jet()

poly p_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4451 of file p_polys.cc.

4452 {
4453  while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R);
4454  if (p==NULL) return NULL;
4455  poly r=p;
4456  while (pNext(p)!=NULL)
4457  {
4458  if (p_Totaldegree(pNext(p),R)>m)
4459  {
4460  p_LmDelete(&pNext(p),R);
4461  }
4462  else
4463  pIter(p);
4464  }
4465  return r;
4466 }

◆ p_JetW()

poly p_JetW ( poly  p,
int  m,
int *  w,
const ring  R 
)

Definition at line 4495 of file p_polys.cc.

4496 {
4497  while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R);
4498  if (p==NULL) return NULL;
4499  poly r=p;
4500  while (pNext(p)!=NULL)
4501  {
4502  if (totaldegreeWecart_IV(pNext(p),R,w)>m)
4503  {
4504  p_LmDelete(&pNext(p),R);
4505  }
4506  else
4507  pIter(p);
4508  }
4509  return r;
4510 }

◆ p_Last()

poly p_Last ( const poly  a,
int &  l,
const ring  r 
)

Definition at line 4686 of file p_polys.cc.

4687 {
4688  if (p == NULL)
4689  {
4690  l = 0;
4691  return NULL;
4692  }
4693  l = 1;
4694  poly a = p;
4695  if (! rIsSyzIndexRing(r))
4696  {
4697  poly next = pNext(a);
4698  while (next!=NULL)
4699  {
4700  a = next;
4701  next = pNext(a);
4702  l++;
4703  }
4704  }
4705  else
4706  {
4707  long unsigned curr_limit = rGetCurrSyzLimit(r);
4708  poly pp = a;
4709  while ((a=pNext(a))!=NULL)
4710  {
4711  if (__p_GetComp(a,r)<=curr_limit/*syzComp*/)
4712  l++;
4713  else break;
4714  pp = a;
4715  }
4716  a=pp;
4717  }
4718  return a;
4719 }
ListNode * next
Definition: janet.h:31
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:724
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:721

◆ p_Lcm() [1/2]

poly p_Lcm ( const poly  a,
const poly  b,
const ring  r 
)

Definition at line 1660 of file p_polys.cc.

1661 {
1662  poly m=p_Init(r);
1663  p_Lcm(a, b, m, r);
1664  p_Setm(m,r);
1665  return(m);
1666 }
void p_Lcm(const poly a, const poly b, poly m, const ring r)
Definition: p_polys.cc:1651

◆ p_Lcm() [2/2]

void p_Lcm ( const poly  a,
const poly  b,
poly  m,
const ring  r 
)

Definition at line 1651 of file p_polys.cc.

1652 {
1653  for (int i=r->N; i; --i)
1654  p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r);
1655 
1656  p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r);
1657  /* Don't do a pSetm here, otherwise hres/lres chockes */
1658 }
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:247

◆ p_LcmRat()

poly p_LcmRat ( const poly  a,
const poly  b,
const long  lCompM,
const ring  r 
)

Definition at line 1673 of file p_polys.cc.

1674 {
1675  poly m = // p_One( r);
1676  p_Init(r);
1677 
1678 // const int (currRing->N) = r->N;
1679 
1680  // for (int i = (currRing->N); i>=r->real_var_start; i--)
1681  for (int i = r->real_var_end; i>=r->real_var_start; i--)
1682  {
1683  const int lExpA = p_GetExp (a, i, r);
1684  const int lExpB = p_GetExp (b, i, r);
1685 
1686  p_SetExp (m, i, si_max(lExpA, lExpB), r);
1687  }
1688 
1689  p_SetComp (m, lCompM, r);
1690  p_Setm(m,r);
1691  n_New(&(p_GetCoeff(m, r)), r);
1692 
1693  return(m);
1694 };
#define n_New(n, r)
Definition: coeffs.h:440

◆ p_LDeg()

static long p_LDeg ( const poly  p,
int *  l,
const ring  r 
)
inlinestatic

Definition at line 381 of file p_polys.h.

381 { return r->pLDeg(p,l,r); }

◆ p_LmCheckIsFromRing()

BOOLEAN p_LmCheckIsFromRing ( poly  p,
ring  r 
)

Definition at line 71 of file pDebug.cc.

72 {
73  if (p != NULL)
74  {
75  #if (OM_TRACK > 0) && defined(OM_TRACK_CUSTOM)
76  void* custom = omGetCustomOfAddr(p);
77  if (custom != NULL)
78  {
79  pPolyAssumeReturnMsg(custom == r ||
80  // be more sloppy for qrings
81  (r->qideal != NULL &&
82  omIsBinPageAddr(p) &&
83  omSizeWOfAddr(p)==omSizeWOfBin(r->PolyBin)) ||
84  rSamePolyRep((ring) custom, r),
85  "monomial not from specified ring",p,r);
86  return TRUE;
87  }
88  else
89  #endif
90  #ifndef X_OMALLOC
91  {
94  return TRUE;
95  }
96  return FALSE;
97  #endif
98  }
99  return TRUE;
100 }
#define pPolyAssumeReturnMsg(cond, msg)
Definition: monomials.h:137
#define _pPolyAssumeReturn(cond, p, r)
Definition: monomials.h:101
#define omIsBinPageAddr(addr)
Definition: omBinPage.h:68
#define omSizeWOfAddr(P)
Definition: xalloc.h:223

◆ p_LmCheckPolyRing()

BOOLEAN p_LmCheckPolyRing ( poly  p,
ring  r 
)

Definition at line 120 of file pDebug.cc.

121 {
122  #ifndef X_OMALLOC
123  pAssumeReturn(r != NULL && r->PolyBin != NULL);
124  #endif
125  pAssumeReturn(p != NULL);
126  return p_LmCheckIsFromRing(p, r);
127 }

◆ p_LmCmp()

static int p_LmCmp ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1580 of file p_polys.h.

1581 {
1582  p_LmCheckPolyRing1(p, r);
1583  p_LmCheckPolyRing1(q, r);
1584 
1585  const unsigned long* _s1 = ((unsigned long*) p->exp);
1586  const unsigned long* _s2 = ((unsigned long*) q->exp);
1587  REGISTER unsigned long _v1;
1588  REGISTER unsigned long _v2;
1589  const unsigned long _l = r->CmpL_Size;
1590 
1591  REGISTER unsigned long _i=0;
1592 
1593  LengthGeneral_OrdGeneral_LoopTop:
1594  _v1 = _s1[_i];
1595  _v2 = _s2[_i];
1596  if (_v1 == _v2)
1597  {
1598  _i++;
1599  if (_i == _l) return 0;
1600  goto LengthGeneral_OrdGeneral_LoopTop;
1601  }
1602  const long* _ordsgn = (long*) r->ordsgn;
1603 #if 1 /* two variants*/
1604  if (_v1 > _v2)
1605  {
1606  return _ordsgn[_i];
1607  }
1608  return -(_ordsgn[_i]);
1609 #else
1610  if (_v1 > _v2)
1611  {
1612  if (_ordsgn[_i] == 1) return 1;
1613  return -1;
1614  }
1615  if (_ordsgn[_i] == 1) return -1;
1616  return 1;
1617 #endif
1618 }
if(yy_init)
Definition: libparse.cc:1420
#define REGISTER
Definition: omalloc.h:27

◆ p_LmDelete() [1/2]

static void p_LmDelete ( poly *  p,
const ring  r 
)
inlinestatic

Definition at line 743 of file p_polys.h.

744 {
745  p_LmCheckPolyRing2(*p, r);
746  poly h = *p;
747  *p = pNext(h);
748  n_Delete(&pGetCoeff(h), r->cf);
749  #ifdef XALLOC_BIN
750  omFreeBin(h,r->PolyBin);
751  #else
752  omFreeBinAddr(h);
753  #endif
754 }
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258

◆ p_LmDelete() [2/2]

static void p_LmDelete ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 723 of file p_polys.h.

724 {
725  p_LmCheckPolyRing2(p, r);
726  n_Delete(&pGetCoeff(p), r->cf);
727  #ifdef XALLOC_BIN
728  omFreeBin(p,r->PolyBin);
729  #else
730  omFreeBinAddr(p);
731  #endif
732 }

◆ p_LmDelete0()

static void p_LmDelete0 ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 733 of file p_polys.h.

734 {
735  p_LmCheckPolyRing2(p, r);
736  if (pGetCoeff(p)!=NULL) n_Delete(&pGetCoeff(p), r->cf);
737  #ifdef XALLOC_BIN
738  omFreeBin(p,r->PolyBin);
739  #else
740  omFreeBinAddr(p);
741  #endif
742 }

◆ p_LmDeleteAndNext()

static poly p_LmDeleteAndNext ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 755 of file p_polys.h.

756 {
757  p_LmCheckPolyRing2(p, r);
758  poly pnext = pNext(p);
759  n_Delete(&pGetCoeff(p), r->cf);
760  #ifdef XALLOC_BIN
761  omFreeBin(p,r->PolyBin);
762  #else
763  omFreeBinAddr(p);
764  #endif
765  return pnext;
766 }

◆ p_LmDeleteAndNextRat()

void p_LmDeleteAndNextRat ( poly *  p,
int  ishift,
ring  r 
)

Definition at line 1696 of file p_polys.cc.

1697 {
1698  /* modifies p*/
1699  // Print("start: "); Print(" "); p_wrp(*p,r);
1700  p_LmCheckPolyRing2(*p, r);
1701  poly q = p_Head(*p,r);
1702  const long cmp = p_GetComp(*p, r);
1703  while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) )
1704  {
1705  p_LmDelete(p,r);
1706  // Print("while: ");p_wrp(*p,r);Print(" ");
1707  }
1708  // p_wrp(*p,r);Print(" ");
1709  // PrintS("end\n");
1710  p_LmDelete(&q,r);
1711 }

◆ p_LmDivisibleBy() [1/2]

static BOOLEAN p_LmDivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1930 of file p_polys.h.

1931 {
1932  p_LmCheckPolyRing(a, r_a);
1933  p_LmCheckPolyRing(b, r_b);
1934  return _p_LmDivisibleBy(a, r_a, b, r_b);
1935 }

◆ p_LmDivisibleBy() [2/2]

static BOOLEAN p_LmDivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1903 of file p_polys.h.

1904 {
1905  p_LmCheckPolyRing1(b, r);
1906  pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r));
1907  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1908  return _p_LmDivisibleByNoComp(a, b, r);
1909  return FALSE;
1910 }

◆ p_LmDivisibleByNoComp() [1/2]

static BOOLEAN p_LmDivisibleByNoComp ( poly  a,
const ring  ra,
poly  b,
const ring  rb 
)
inlinestatic

Definition at line 1896 of file p_polys.h.

1897 {
1898  p_LmCheckPolyRing1(a, ra);
1899  p_LmCheckPolyRing1(b, rb);
1900  return _p_LmDivisibleByNoComp(a, ra, b, rb);
1901 }

◆ p_LmDivisibleByNoComp() [2/2]

static BOOLEAN p_LmDivisibleByNoComp ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1889 of file p_polys.h.

1890 {
1891  p_LmCheckPolyRing1(a, r);
1892  p_LmCheckPolyRing1(b, r);
1893  return _p_LmDivisibleByNoComp(a, b, r);
1894 }

◆ p_LmDivisibleByPart()

static BOOLEAN p_LmDivisibleByPart ( poly  a,
poly  b,
const ring  r,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1868 of file p_polys.h.

1869 {
1870  p_LmCheckPolyRing1(b, r);
1871  pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r));
1872  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1873  return _p_LmDivisibleByNoCompPart(a, r, b, r,start, end);
1874  return FALSE;
1875 }

◆ p_LmExpVectorAddIsOk()

static BOOLEAN p_LmExpVectorAddIsOk ( const poly  p1,
const poly  p2,
const ring  r 
)
inlinestatic

Definition at line 2046 of file p_polys.h.

2048 {
2049  p_LmCheckPolyRing(p1, r);
2050  p_LmCheckPolyRing(p2, r);
2051  unsigned long l1, l2, divmask = r->divmask;
2052  int i;
2053 
2054  for (i=0; i<r->VarL_Size; i++)
2055  {
2056  l1 = p1->exp[r->VarL_Offset[i]];
2057  l2 = p2->exp[r->VarL_Offset[i]];
2058  // do the divisiblity trick
2059  if ( (l1 > ULONG_MAX - l2) ||
2060  (((l1 & divmask) ^ (l2 & divmask)) != ((l1 + l2) & divmask)))
2061  return FALSE;
2062  }
2063  return TRUE;
2064 }

◆ p_LmFree() [1/2]

static void p_LmFree ( poly *  p,
ring   
)
inlinestatic

Definition at line 696 of file p_polys.h.

698 {
699  p_LmCheckPolyRing2(*p, r);
700  poly h = *p;
701  *p = pNext(h);
702  #ifdef XALLOC_BIN
703  omFreeBin(h,r->PolyBin);
704  #else
705  omFreeBinAddr(h);
706  #endif
707 }

◆ p_LmFree() [2/2]

static void p_LmFree ( poly  p,
ring   
)
inlinestatic

Definition at line 683 of file p_polys.h.

685 {
686  p_LmCheckPolyRing2(p, r);
687  #ifdef XALLOC_BIN
688  omFreeBin(p,r->PolyBin);
689  #else
690  omFreeBinAddr(p);
691  #endif
692 }

◆ p_LmFreeAndNext()

static poly p_LmFreeAndNext ( poly  p,
ring   
)
inlinestatic

Definition at line 711 of file p_polys.h.

713 {
714  p_LmCheckPolyRing2(p, r);
715  poly pnext = pNext(p);
716  #ifdef XALLOC_BIN
717  omFreeBin(p,r->PolyBin);
718  #else
719  omFreeBinAddr(p);
720  #endif
721  return pnext;
722 }

◆ p_LmInit() [1/3]

static poly p_LmInit ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1335 of file p_polys.h.

1336 {
1337  p_LmCheckPolyRing1(p, r);
1338  poly np;
1339  omTypeAllocBin(poly, np, r->PolyBin);
1340  p_SetRingOfLm(np, r);
1341  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1342  pNext(np) = NULL;
1343  pSetCoeff0(np, NULL);
1344  return np;
1345 }

◆ p_LmInit() [2/3]

static poly p_LmInit ( poly  s_p,
const ring  s_r,
const ring  d_r 
)
inlinestatic

Definition at line 1363 of file p_polys.h.

1364 {
1365  pAssume1(d_r != NULL);
1366  return p_LmInit(s_p, s_r, d_r, d_r->PolyBin);
1367 }

◆ p_LmInit() [3/3]

static poly p_LmInit ( poly  s_p,
const ring  s_r,
const ring  d_r,
omBin  d_bin 
)
inlinestatic

Definition at line 1346 of file p_polys.h.

1347 {
1348  p_LmCheckPolyRing1(s_p, s_r);
1349  p_CheckRing(d_r);
1350  pAssume1(d_r->N <= s_r->N);
1351  poly d_p = p_Init(d_r, d_bin);
1352  for (unsigned i=d_r->N; i!=0; i--)
1353  {
1354  p_SetExp(d_p, i, p_GetExp(s_p, i,s_r), d_r);
1355  }
1356  if (rRing_has_Comp(d_r))
1357  {
1358  p_SetComp(d_p, p_GetComp(s_p,s_r), d_r);
1359  }
1360  p_Setm(d_p, d_r);
1361  return d_p;
1362 }
BOOLEAN p_CheckRing(ring r)
Definition: pDebug.cc:128

◆ p_LmIsConstant()

static BOOLEAN p_LmIsConstant ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1023 of file p_polys.h.

1024 {
1025  if (p_LmIsConstantComp(p, r))
1026  return (p_GetComp(p, r) == 0);
1027  return FALSE;
1028 }

◆ p_LmIsConstantComp()

static BOOLEAN p_LmIsConstantComp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1006 of file p_polys.h.

1007 {
1008  //p_LmCheckPolyRing(p, r);
1009  int i = r->VarL_Size - 1;
1010 
1011  do
1012  {
1013  if (p->exp[r->VarL_Offset[i]] != 0)
1014  return FALSE;
1015  i--;
1016  }
1017  while (i >= 0);
1018  return TRUE;
1019 }

◆ p_LmShallowCopyDelete()

static poly p_LmShallowCopyDelete ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1393 of file p_polys.h.

1394 {
1395  p_LmCheckPolyRing1(p, r);
1396  pAssume1(omSizeWOfBin(bin) == omSizeWOfBin(r->PolyBin));
1397  poly new_p = p_New(r);
1398  memcpy(new_p->exp, p->exp, r->ExpL_Size*sizeof(long));
1399  pSetCoeff0(new_p, pGetCoeff(p));
1400  pNext(new_p) = pNext(p);
1401  omFreeBinAddr(p);
1402  return new_p;
1403 }
static poly p_New(const ring, omBin bin)
Definition: p_polys.h:664

◆ p_LmShortDivisibleBy() [1/2]

static BOOLEAN p_LmShortDivisibleBy ( poly  a,
unsigned long  sev_a,
const ring  r_a,
poly  b,
unsigned long  not_sev_b,
const ring  r_b 
)
inlinestatic

Definition at line 1977 of file p_polys.h.

1979 {
1980  p_LmCheckPolyRing1(a, r_a);
1981  p_LmCheckPolyRing1(b, r_b);
1982 #ifndef PDIV_DEBUG
1983  _pPolyAssume2(p_GetShortExpVector(a, r_a) == sev_a, a, r_a);
1984  _pPolyAssume2(p_GetShortExpVector(b, r_b) == ~ not_sev_b, b, r_b);
1985 
1986  if (sev_a & not_sev_b)
1987  {
1988  pAssume1(_p_LmDivisibleByNoComp(a, r_a, b, r_b) == FALSE);
1989  return FALSE;
1990  }
1991  return _p_LmDivisibleBy(a, r_a, b, r_b);
1992 #else
1993  return pDebugLmShortDivisibleBy(a, sev_a, r_a, b, not_sev_b, r_b);
1994 #endif
1995 }
#define _pPolyAssume2(cond, p, r)
Definition: monomials.h:195
BOOLEAN pDebugLmShortDivisibleBy(poly p1, unsigned long sev_1, ring r_1, poly p2, unsigned long not_sev_2, ring r_2)
Definition: pDebug.cc:366
unsigned long p_GetShortExpVector(const poly a, const ring r)
Definition: p_polys.cc:4846

◆ p_LmShortDivisibleBy() [2/2]

static BOOLEAN p_LmShortDivisibleBy ( poly  a,
unsigned long  sev_a,
poly  b,
unsigned long  not_sev_b,
const ring  r 
)
inlinestatic

Definition at line 1937 of file p_polys.h.

1939 {
1940  p_LmCheckPolyRing1(a, r);
1941  p_LmCheckPolyRing1(b, r);
1942 #ifndef PDIV_DEBUG
1943  _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1944  _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1945 
1946  if (sev_a & not_sev_b)
1947  {
1949  return FALSE;
1950  }
1951  return p_LmDivisibleBy(a, b, r);
1952 #else
1953  return pDebugLmShortDivisibleBy(a, sev_a, r, b, not_sev_b, r);
1954 #endif
1955 }
static BOOLEAN p_LmDivisibleByNoComp(poly a, poly b, const ring r)
Definition: p_polys.h:1889
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1903

◆ p_LmShortDivisibleByNoComp()

static BOOLEAN p_LmShortDivisibleByNoComp ( poly  a,
unsigned long  sev_a,
poly  b,
unsigned long  not_sev_b,
const ring  r 
)
inlinestatic

Definition at line 1957 of file p_polys.h.

1959 {
1960  p_LmCheckPolyRing1(a, r);
1961  p_LmCheckPolyRing1(b, r);
1962 #ifndef PDIV_DEBUG
1963  _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1964  _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1965 
1966  if (sev_a & not_sev_b)
1967  {
1969  return FALSE;
1970  }
1971  return p_LmDivisibleByNoComp(a, b, r);
1972 #else
1973  return pDebugLmShortDivisibleByNoComp(a, sev_a, r, b, not_sev_b, r);
1974 #endif
1975 }
BOOLEAN pDebugLmShortDivisibleByNoComp(poly p1, unsigned long sev_1, ring r_1, poly p2, unsigned long not_sev_2, ring r_2)
Definition: pDebug.cc:389

◆ p_LowVar()

int p_LowVar ( poly  p,
const ring  r 
)

the minimal index of used variables - 1

Definition at line 4745 of file p_polys.cc.

4746 {
4747  int k,l,lex;
4748 
4749  if (p == NULL) return -1;
4750 
4751  k = 32000;/*a very large dummy value*/
4752  while (p != NULL)
4753  {
4754  l = 1;
4755  lex = p_GetExp(p,l,r);
4756  while ((l < (rVar(r))) && (lex == 0))
4757  {
4758  l++;
4759  lex = p_GetExp(p,l,r);
4760  }
4761  l--;
4762  if (l < k) k = l;
4763  pIter(p);
4764  }
4765  return k;
4766 }

◆ p_LtCmp()

static int p_LtCmp ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1621 of file p_polys.h.

1622 {
1623  int res = p_LmCmp(p,q,r);
1624  if(res == 0)
1625  {
1626  if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1627  return res;
1628  number pc = n_Copy(p_GetCoeff(p,r),r->cf);
1629  number qc = n_Copy(p_GetCoeff(q,r),r->cf);
1630  if(!n_GreaterZero(pc,r->cf))
1631  pc = n_InpNeg(pc,r->cf);
1632  if(!n_GreaterZero(qc,r->cf))
1633  qc = n_InpNeg(qc,r->cf);
1634  if(n_Greater(pc,qc,r->cf))
1635  res = 1;
1636  else if(n_Greater(qc,pc,r->cf))
1637  res = -1;
1638  else if(n_Equal(pc,qc,r->cf))
1639  res = 0;
1640  n_Delete(&pc,r->cf);
1641  n_Delete(&qc,r->cf);
1642  }
1643  return res;
1644 }
static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
ordered fields: TRUE iff 'a' is larger than 'b'; in Z/pZ: TRUE iff la > lb, where la and lb are the l...
Definition: coeffs.h:511

◆ p_LtCmpNoAbs()

static int p_LtCmpNoAbs ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1647 of file p_polys.h.

1648 {
1649  int res = p_LmCmp(p,q,r);
1650  if(res == 0)
1651  {
1652  if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1653  return res;
1654  number pc = p_GetCoeff(p,r);
1655  number qc = p_GetCoeff(q,r);
1656  if(n_Greater(pc,qc,r->cf))
1657  res = 1;
1658  if(n_Greater(qc,pc,r->cf))
1659  res = -1;
1660  if(n_Equal(pc,qc,r->cf))
1661  res = 0;
1662  }
1663  return res;
1664 }

◆ p_LtCmpOrdSgnDiffM()

static int p_LtCmpOrdSgnDiffM ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1669 of file p_polys.h.

1670 {
1671  if(r->OrdSgn == 1)
1672  {
1673  return(p_LtCmp(p,q,r) == 1);
1674  }
1675  else
1676  {
1677  return(p_LmCmp(p,q,r) == -1);
1678  }
1679 }
static int p_LtCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1621

◆ p_LtCmpOrdSgnDiffP()

static int p_LtCmpOrdSgnDiffP ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1685 of file p_polys.h.

1686 {
1687  if(r->OrdSgn == 1)
1688  {
1689  return(p_LmCmp(p,q,r) == -1);
1690  }
1691  else
1692  {
1693  return(p_LtCmp(p,q,r) != -1);
1694  }
1695 
1696 }

◆ p_LtCmpOrdSgnEqM()

static int p_LtCmpOrdSgnEqM ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1702 of file p_polys.h.

1703 {
1704  return(p_LtCmp(p,q,r) == -r->OrdSgn);
1705 }

◆ p_LtCmpOrdSgnEqP()

static int p_LtCmpOrdSgnEqP ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1711 of file p_polys.h.

1712 {
1713  return(p_LtCmp(p,q,r) == r->OrdSgn);
1714 }

◆ p_MaxComp() [1/2]

static long p_MaxComp ( poly  p,
ring  lmRing 
)
inlinestatic

Definition at line 311 of file p_polys.h.

311 {return p_MaxComp(p,lmRing,lmRing);}
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:292

◆ p_MaxComp() [2/2]

static long p_MaxComp ( poly  p,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 292 of file p_polys.h.

293 {
294  long result,i;
295 
296  if(p==NULL) return 0;
297  result = p_GetComp(p, lmRing);
298  if (result != 0)
299  {
300  loop
301  {
302  pIter(p);
303  if(p==NULL) break;
304  i = p_GetComp(p, tailRing);
305  if (i>result) result = i;
306  }
307  }
308  return result;
309 }

◆ p_MaxExpPerVar()

int p_MaxExpPerVar ( poly  p,
int  i,
const ring  r 
)

max exponent of variable x_i in p

Definition at line 5068 of file p_polys.cc.

5069 {
5070  int m=0;
5071  while(p!=NULL)
5072  {
5073  int mm=p_GetExp(p,i,r);
5074  if (mm>m) m=mm;
5075  pIter(p);
5076  }
5077  return m;
5078 }

◆ p_MDivide()

poly p_MDivide ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1488 of file p_polys.cc.

1489 {
1490  assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0));
1491  int i;
1492  poly result = p_Init(r);
1493 
1494  for(i=(int)r->N; i; i--)
1495  p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r);
1496  p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r);
1497  p_Setm(result,r);
1498  return result;
1499 }

◆ p_MemAdd_NegWeightAdjust()

static void p_MemAdd_NegWeightAdjust ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1292 of file p_polys.h.

1293 {
1294  if (r->NegWeightL_Offset != NULL)
1295  {
1296  for (int i=r->NegWeightL_Size-1; i>=0; i--)
1297  {
1298  p->exp[r->NegWeightL_Offset[i]] -= POLY_NEGWEIGHT_OFFSET;
1299  }
1300  }
1301 }

◆ p_MemSub_NegWeightAdjust()

static void p_MemSub_NegWeightAdjust ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1302 of file p_polys.h.

1303 {
1304  if (r->NegWeightL_Offset != NULL)
1305  {
1306  for (int i=r->NegWeightL_Size-1; i>=0; i--)
1307  {
1308  p->exp[r->NegWeightL_Offset[i]] += POLY_NEGWEIGHT_OFFSET;
1309  }
1310  }
1311 }

◆ p_Merge_q()

static poly p_Merge_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1212 of file p_polys.h.

1213 {
1214  assume( (p != q) || (p == NULL && q == NULL) );
1215  return r->p_Procs->p_Merge_q(p, q, r);
1216 }

◆ p_MinComp() [1/2]

static long p_MinComp ( poly  p,
ring  lmRing 
)
inlinestatic

Definition at line 332 of file p_polys.h.

332 {return p_MinComp(p,lmRing,lmRing);}
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313

◆ p_MinComp() [2/2]

static long p_MinComp ( poly  p,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 313 of file p_polys.h.

314 {
315  long result,i;
316 
317  if(p==NULL) return 0;
318  result = p_GetComp(p,lmRing);
319  if (result != 0)
320  {
321  loop
322  {
323  pIter(p);
324  if(p==NULL) break;
325  i = p_GetComp(p,tailRing);
326  if (i<result) result = i;
327  }
328  }
329  return result;
330 }

◆ p_MinDeg()

int p_MinDeg ( poly  p,
intvec w,
const ring  R 
)

Definition at line 4513 of file p_polys.cc.

4514 {
4515  if(p==NULL)
4516  return -1;
4517  int d=-1;
4518  while(p!=NULL)
4519  {
4520  int d0=0;
4521  for(int j=0;j<rVar(R);j++)
4522  if(w==NULL||j>=w->length())
4523  d0+=p_GetExp(p,j+1,R);
4524  else
4525  d0+=(*w)[j]*p_GetExp(p,j+1,R);
4526  if(d0<d||d==-1)
4527  d=d0;
4528  pIter(p);
4529  }
4530  return d;
4531 }

◆ p_mInit()

poly p_mInit ( const char *  s,
BOOLEAN ok,
const ring  r 
)

Definition at line 1442 of file p_polys.cc.

1443 {
1444  poly p;
1445  const char *s=p_Read(st,p,r);
1446  if (*s!='\0')
1447  {
1448  if ((s!=st)&&isdigit(st[0]))
1449  {
1451  }
1452  ok=FALSE;
1453  if (p!=NULL)
1454  {
1455  if (pGetCoeff(p)==NULL) p_LmFree(p,r);
1456  else p_LmDelete(p,r);
1457  }
1458  return NULL;
1459  }
1460  p_Test(p,r);
1461  ok=!errorreported;
1462  return p;
1463 }
VAR short errorreported
Definition: feFopen.cc:23
const char * p_Read(const char *st, poly &rc, const ring r)
Definition: p_polys.cc:1370

◆ p_Minus_mm_Mult_qq() [1/2]

static poly p_Minus_mm_Mult_qq ( poly  p,
const poly  m,
const poly  q,
const ring  r 
)
inlinestatic

Definition at line 1081 of file p_polys.h.

1082 {
1083  int shorter;
1084 
1085  return r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1086 }

◆ p_Minus_mm_Mult_qq() [2/2]

static poly p_Minus_mm_Mult_qq ( poly  p,
const poly  m,
const poly  q,
int &  lp,
int  lq,
const poly  spNoether,
const ring  r 
)
inlinestatic

Definition at line 1070 of file p_polys.h.

1072 {
1073  int shorter;
1074  const poly res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, spNoether, r);
1075  lp += lq - shorter;
1076 // assume( lp == pLength(res) );
1077  return res;
1078 }

◆ p_mm_Mult()

static poly p_mm_Mult ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1061 of file p_polys.h.

1062 {
1063  if (p==NULL) return NULL;
1064  if (p_LmIsConstant(m, r))
1065  return __p_Mult_nn(p, pGetCoeff(m), r);
1066  else
1067  return r->p_Procs->p_mm_Mult(p, m, r);
1068 }

◆ p_Mult_mm()

static poly p_Mult_mm ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1051 of file p_polys.h.

1052 {
1053  if (p==NULL) return NULL;
1054  if (p_LmIsConstant(m, r))
1055  return __p_Mult_nn(p, pGetCoeff(m), r);
1056  else
1057  return r->p_Procs->p_Mult_mm(p, m, r);
1058 }

◆ p_Mult_nn() [1/2]

static poly p_Mult_nn ( poly  p,
number  n,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 973 of file p_polys.h.

975 {
976  assume(p!=NULL);
977 #ifndef PDEBUG
978  if (lmRing == tailRing)
979  return p_Mult_nn(p, n, tailRing);
980 #endif
981  poly pnext = pNext(p);
982  pNext(p) = NULL;
983  p = lmRing->p_Procs->p_Mult_nn(p, n, lmRing);
984  if (pnext!=NULL)
985  {
986  pNext(p) = tailRing->p_Procs->p_Mult_nn(pnext, n, tailRing);
987  }
988  return p;
989 }
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:958

◆ p_Mult_nn() [2/2]

static poly p_Mult_nn ( poly  p,
number  n,
const ring  r 
)
inlinestatic

Definition at line 958 of file p_polys.h.

959 {
960  if (p==NULL) return NULL;
961  if (n_IsOne(n, r->cf))
962  return p;
963  else if (n_IsZero(n, r->cf))
964  {
965  p_Delete(&p, r); // NOTE: without p_Delete - memory leak!
966  return NULL;
967  }
968  else
969  return r->p_Procs->p_Mult_nn(p, n, r);
970 }

◆ p_Mult_q()

static poly p_Mult_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1114 of file p_polys.h.

1115 {
1116  assume( (p != q) || (p == NULL && q == NULL) );
1117 
1118  if (p == NULL)
1119  {
1120  p_Delete(&q, r);
1121  return NULL;
1122  }
1123  if (q == NULL)
1124  {
1125  p_Delete(&p, r);
1126  return NULL;
1127  }
1128 
1129  if (pNext(p) == NULL)
1130  {
1131  q = r->p_Procs->p_mm_Mult(q, p, r);
1132  p_LmDelete(&p, r);
1133  return q;
1134  }
1135 
1136  if (pNext(q) == NULL)
1137  {
1138  p = r->p_Procs->p_Mult_mm(p, q, r);
1139  p_LmDelete(&q, r);
1140  return p;
1141  }
1142 #if defined(HAVE_PLURAL) || defined(HAVE_SHIFTBBA)
1143  if (rIsNCRing(r))
1144  return _nc_p_Mult_q(p, q, r);
1145  else
1146 #endif
1147  return _p_Mult_q(p, q, 0, r);
1148 }
poly _nc_p_Mult_q(poly p, poly q, const ring r)
general NC-multiplication with destruction
Definition: old.gring.cc:215
poly _p_Mult_q(poly p, poly q, const int copy, const ring r)
Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2,...
Definition: p_Mult_q.cc:313

◆ p_MultExp()

static long p_MultExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 621 of file p_polys.h.

622 {
623  p_LmCheckPolyRing2(p, r);
624  long e = p_GetExp(p,v,r);
625  e *= ee;
626  return p_SetExp(p,v,e,r);
627 }

◆ p_Neg()

static poly p_Neg ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1107 of file p_polys.h.

1108 {
1109  return r->p_Procs->p_Neg(p, r);
1110 }

◆ p_New() [1/2]

static poly p_New ( const  ring,
omBin  bin 
)
inlinestatic

Definition at line 664 of file p_polys.h.

666 {
667  p_CheckRing2(r);
668  pAssume2(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
669  poly p;
670  omTypeAllocBin(poly, p, bin);
671  p_SetRingOfLm(p, r);
672  return p;
673 }
#define p_CheckRing2(r)
Definition: monomials.h:200

◆ p_New() [2/2]

static poly p_New ( ring  r)
inlinestatic

Definition at line 675 of file p_polys.h.

676 {
677  return p_New(r, r->PolyBin);
678 }

◆ p_Norm()

void p_Norm ( poly  p1,
const ring  r 
)

Definition at line 3797 of file p_polys.cc.

3798 {
3799  if (rField_is_Ring(r))
3800  {
3801  if(!n_GreaterZero(pGetCoeff(p1),r->cf)) p1 = p_Neg(p1,r);
3802  if (!n_IsUnit(pGetCoeff(p1), r->cf)) return;
3803  // Werror("p_Norm not possible in the case of coefficient rings.");
3804  }
3805  else if (p1!=NULL)
3806  {
3807  if (pNext(p1)==NULL)
3808  {
3809  p_SetCoeff(p1,n_Init(1,r->cf),r);
3810  return;
3811  }
3812  if (!n_IsOne(pGetCoeff(p1),r->cf))
3813  {
3814  number k, c;
3815  n_Normalize(pGetCoeff(p1),r->cf);
3816  k = pGetCoeff(p1);
3817  c = n_Init(1,r->cf);
3818  pSetCoeff0(p1,c);
3819  poly h = pNext(p1);
3820  if (rField_is_Zp(r))
3821  {
3822  if (r->cf->ch>32003)
3823  {
3824  number inv=n_Invers(k,r->cf);
3825  while (h!=NULL)
3826  {
3827  c=n_Mult(pGetCoeff(h),inv,r->cf);
3828  // no need to normalize
3829  p_SetCoeff(h,c,r);
3830  pIter(h);
3831  }
3832  n_Delete(&inv,r->cf);
3833  }
3834  else
3835  {
3836  while (h!=NULL)
3837  {
3838  c=n_Div(pGetCoeff(h),k,r->cf);
3839  // no need to normalize
3840  p_SetCoeff(h,c,r);
3841  pIter(h);
3842  }
3843  }
3844  }
3845  else
3846  {
3847  while (h!=NULL)
3848  {
3849  c=n_Div(pGetCoeff(h),k,r->cf);
3850  // no need to normalize: Z/p, R
3851  // normalize already in nDiv: Q_a, Z/p_a
3852  // remains: Q
3853  if (rField_is_Q(r) && (!n_IsOne(c,r->cf))) n_Normalize(c,r->cf);
3854  p_SetCoeff(h,c,r);
3855  pIter(h);
3856  }
3857  }
3858  n_Delete(&k,r->cf);
3859  }
3860  else
3861  {
3862  //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE
3863  if (rField_is_Q(r))
3864  {
3865  poly h = pNext(p1);
3866  while (h!=NULL)
3867  {
3868  n_Normalize(pGetCoeff(h),r->cf);
3869  pIter(h);
3870  }
3871  }
3872  }
3873  }
3874 }

◆ p_Normalize()

void p_Normalize ( poly  p,
const ring  r 
)

Definition at line 3879 of file p_polys.cc.

3880 {
3881  if ((rField_has_simple_inverse(r)) /* Z/p, GF(p,n), R, long R/C */
3882  || (r->cf->cfNormalize==ndNormalize)) /* Nemo rings, ...*/
3883  return;
3884  while (p!=NULL)
3885  {
3886  // no test befor n_Normalize: n_Normalize should fix problems
3887  n_Normalize(pGetCoeff(p),r->cf);
3888  pIter(p);
3889  }
3890 }
void ndNormalize(number &, const coeffs)
Definition: numbers.cc:163
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition: ring.h:549

◆ p_NSet()

poly p_NSet ( number  n,
const ring  r 
)

returns the poly representing the number n, destroys n

Definition at line 1469 of file p_polys.cc.

1470 {
1471  if (n_IsZero(n,r->cf))
1472  {
1473  n_Delete(&n, r->cf);
1474  return NULL;
1475  }
1476  else
1477  {
1478  poly rc = p_Init(r);
1479  pSetCoeff0(rc,n);
1480  return rc;
1481  }
1482 }

◆ p_One()

poly p_One ( const ring  r)

Definition at line 1313 of file p_polys.cc.

1314 {
1315  poly rc = p_Init(r);
1316  pSetCoeff0(rc,n_Init(1,r->cf));
1317  return rc;
1318 }

◆ p_OneComp()

BOOLEAN p_OneComp ( poly  p,
const ring  r 
)

return TRUE if all monoms have the same component

Definition at line 1208 of file p_polys.cc.

1209 {
1210  if(p!=NULL)
1211  {
1212  long i = p_GetComp(p, r);
1213  while (pNext(p)!=NULL)
1214  {
1215  pIter(p);
1216  if(i != p_GetComp(p, r)) return FALSE;
1217  }
1218  }
1219  return TRUE;
1220 }

◆ p_PermPoly()

poly p_PermPoly ( poly  p,
const int *  perm,
const ring  OldRing,
const ring  dst,
nMapFunc  nMap,
const int *  par_perm = NULL,
int  OldPar = 0,
BOOLEAN  use_mult = FALSE 
)

Definition at line 4195 of file p_polys.cc.

4197 {
4198 #if 0
4199  p_Test(p, oldRing);
4200  PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing);
4201 #endif
4202  const int OldpVariables = rVar(oldRing);
4203  poly result = NULL;
4204  poly result_last = NULL;
4205  poly aq = NULL; /* the map coefficient */
4206  poly qq; /* the mapped monomial */
4207  assume(dst != NULL);
4208  assume(dst->cf != NULL);
4209  #ifdef HAVE_PLURAL
4210  poly tmp_mm=p_One(dst);
4211  #endif
4212  while (p != NULL)
4213  {
4214  // map the coefficient
4215  if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap))
4216  && (nMap != NULL) )
4217  {
4218  qq = p_Init(dst);
4219  assume( nMap != NULL );
4220  number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf);
4221  n_Test (n,dst->cf);
4222  if ( nCoeff_is_algExt(dst->cf) )
4223  n_Normalize(n, dst->cf);
4224  p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!!
4225  }
4226  else
4227  {
4228  qq = p_One(dst);
4229 // aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst???
4230 // poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst)
4231  aq = n_PermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing, dst);
4232  p_Test(aq, dst);
4233  if ( nCoeff_is_algExt(dst->cf) )
4234  p_Normalize(aq,dst);
4235  if (aq == NULL)
4236  p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!!
4237  p_Test(aq, dst);
4238  }
4239  if (rRing_has_Comp(dst))
4240  p_SetComp(qq, p_GetComp(p, oldRing), dst);
4241  if ( n_IsZero(pGetCoeff(qq), dst->cf) )
4242  {
4243  p_LmDelete(&qq,dst);
4244  qq = NULL;
4245  }
4246  else
4247  {
4248  // map pars:
4249  int mapped_to_par = 0;
4250  for(int i = 1; i <= OldpVariables; i++)
4251  {
4252  int e = p_GetExp(p, i, oldRing);
4253  if (e != 0)
4254  {
4255  if (perm==NULL)
4256  p_SetExp(qq, i, e, dst);
4257  else if (perm[i]>0)
4258  {
4259  #ifdef HAVE_PLURAL
4260  if(use_mult)
4261  {
4262  p_SetExp(tmp_mm,perm[i],e,dst);
4263  p_Setm(tmp_mm,dst);
4264  qq=p_Mult_mm(qq,tmp_mm,dst);
4265  p_SetExp(tmp_mm,perm[i],0,dst);
4266 
4267  }
4268  else
4269  #endif
4270  p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst);
4271  }
4272  else if (perm[i]<0)
4273  {
4274  number c = p_GetCoeff(qq, dst);
4275  if (rField_is_GF(dst))
4276  {
4277  assume( dst->cf->extRing == NULL );
4278  number ee = n_Param(1, dst);
4279  number eee;
4280  n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst);
4281  ee = n_Mult(c, eee, dst->cf);
4282  //nfDelete(c,dst);nfDelete(eee,dst);
4283  pSetCoeff0(qq,ee);
4284  }
4285  else if (nCoeff_is_Extension(dst->cf))
4286  {
4287  const int par = -perm[i];
4288  assume( par > 0 );
4289 // WarnS("longalg missing 3");
4290 #if 1
4291  const coeffs C = dst->cf;
4292  assume( C != NULL );
4293  const ring R = C->extRing;
4294  assume( R != NULL );
4295  assume( par <= rVar(R) );
4296  poly pcn; // = (number)c
4297  assume( !n_IsZero(c, C) );
4298  if( nCoeff_is_algExt(C) )
4299  pcn = (poly) c;
4300  else // nCoeff_is_transExt(C)
4301  pcn = NUM((fraction)c);
4302  if (pNext(pcn) == NULL) // c->z
4303  p_AddExp(pcn, -perm[i], e, R);
4304  else /* more difficult: we have really to multiply: */
4305  {
4306  poly mmc = p_ISet(1, R);
4307  p_SetExp(mmc, -perm[i], e, R);
4308  p_Setm(mmc, R);
4309  number nnc;
4310  // convert back to a number: number nnc = mmc;
4311  if( nCoeff_is_algExt(C) )
4312  nnc = (number) mmc;
4313  else // nCoeff_is_transExt(C)
4314  nnc = ntInit(mmc, C);
4315  p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C);
4316  n_Delete((number *)&c, C);
4317  n_Delete((number *)&nnc, C);
4318  }
4319  mapped_to_par=1;
4320 #endif
4321  }
4322  }
4323  else
4324  {
4325  /* this variable maps to 0 !*/
4326  p_LmDelete(&qq, dst);
4327  break;
4328  }
4329  }
4330  }
4331  if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) )
4332  {
4333  number n = p_GetCoeff(qq, dst);
4334  n_Normalize(n, dst->cf);
4335  p_GetCoeff(qq, dst) = n;
4336  }
4337  }
4338  pIter(p);
4339 
4340 #if 0
4341  p_Test(aq,dst);
4342  PrintS("aq: "); p_Write(aq, dst, dst);
4343 #endif
4344 
4345 
4346 #if 1
4347  if (qq!=NULL)
4348  {
4349  p_Setm(qq,dst);
4350 
4351  p_Test(aq,dst);
4352  p_Test(qq,dst);
4353 
4354 #if 0
4355  PrintS("qq: "); p_Write(qq, dst, dst);
4356 #endif
4357 
4358  if (aq!=NULL)
4359  qq=p_Mult_q(aq,qq,dst);
4360  aq = qq;
4361  while (pNext(aq) != NULL) pIter(aq);
4362  if (result_last==NULL)
4363  {
4364  result=qq;
4365  }
4366  else
4367  {
4368  pNext(result_last)=qq;
4369  }
4370  result_last=aq;
4371  aq = NULL;
4372  }
4373  else if (aq!=NULL)
4374  {
4375  p_Delete(&aq,dst);
4376  }
4377  }
4378  result=p_SortAdd(result,dst);
4379 #else
4380  // if (qq!=NULL)
4381  // {
4382  // pSetm(qq);
4383  // pTest(qq);
4384  // pTest(aq);
4385  // if (aq!=NULL) qq=pMult(aq,qq);
4386  // aq = qq;
4387  // while (pNext(aq) != NULL) pIter(aq);
4388  // pNext(aq) = result;
4389  // aq = NULL;
4390  // result = qq;
4391  // }
4392  // else if (aq!=NULL)
4393  // {
4394  // pDelete(&aq);
4395  // }
4396  //}
4397  //p = result;
4398  //result = NULL;
4399  //while (p != NULL)
4400  //{
4401  // qq = p;
4402  // pIter(p);
4403  // qq->next = NULL;
4404  // result = pAdd(result, qq);
4405  //}
4406 #endif
4407  p_Test(result,dst);
4408 #if 0
4409  p_Test(result,dst);
4410  PrintS("result: "); p_Write(result,dst,dst);
4411 #endif
4412  #ifdef HAVE_PLURAL
4413  p_LmDelete(&tmp_mm,dst);
4414  #endif
4415  return result;
4416 }
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1....
Definition: coeffs.h:783
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition: coeffs.h:846
number ndCopyMap(number a, const coeffs src, const coeffs dst)
Definition: numbers.cc:255
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition: coeffs.h:632
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition: p_polys.cc:4092
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition: p_polys.cc:1297
poly p_One(const ring r)
Definition: p_polys.cc:1313
void p_Write(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:342
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:1051
static poly p_SortAdd(poly p, const ring r, BOOLEAN revert=FALSE)
Definition: p_polys.h:1219
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:522
number ntInit(long i, const coeffs cf)
Definition: transext.cc:704

◆ p_Plus_mm_Mult_qq() [1/2]

static poly p_Plus_mm_Mult_qq ( poly  p,
poly  m,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1205 of file p_polys.h.

1206 {
1207  int lp = 0, lq = 0;
1208  return p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1209 }
static poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq, const ring r)
Definition: p_polys.h:1183

◆ p_Plus_mm_Mult_qq() [2/2]

static poly p_Plus_mm_Mult_qq ( poly  p,
poly  m,
poly  q,
int &  lp,
int  lq,
const ring  r 
)
inlinestatic

Definition at line 1183 of file p_polys.h.

1185 {
1186 #ifdef HAVE_PLURAL
1187  if (rIsPluralRing(r))
1188  return nc_p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1189 #endif
1190 
1191 // this should be implemented more efficiently
1192  poly res;
1193  int shorter;
1194  number n_old = pGetCoeff(m);
1195  number n_neg = n_Copy(n_old, r->cf);
1196  n_neg = n_InpNeg(n_neg, r->cf);
1197  pSetCoeff0(m, n_neg);
1198  res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1199  lp = (lp + lq) - shorter;
1200  pSetCoeff0(m, n_old);
1201  n_Delete(&n_neg, r->cf);
1202  return res;
1203 }
poly nc_p_Plus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, const int, const ring r)
Definition: old.gring.cc:168
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400

◆ p_PolyDiv()

poly p_PolyDiv ( poly &  p,
const poly  divisor,
const BOOLEAN  needResult,
const ring  r 
)

assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor:

  • afterwards p contains the remainder of the division, i.e., p_before = result * divisor + p_afterwards;
  • if needResult == TRUE, then the method computes and returns 'result', otherwise NULL is returned (This parametrization can be used when one is only interested in the remainder of the division. In this case, the method will be slightly faster.) leaves divisor unmodified

Definition at line 1866 of file p_polys.cc.

1867 {
1868  assume(divisor != NULL);
1869  if (p == NULL) return NULL;
1870 
1871  poly result = NULL;
1872  number divisorLC = p_GetCoeff(divisor, r);
1873  int divisorLE = p_GetExp(divisor, 1, r);
1874  while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r)))
1875  {
1876  /* determine t = LT(p) / LT(divisor) */
1877  poly t = p_ISet(1, r);
1878  number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf);
1879  n_Normalize(c,r->cf);
1880  p_SetCoeff(t, c, r);
1881  int e = p_GetExp(p, 1, r) - divisorLE;
1882  p_SetExp(t, 1, e, r);
1883  p_Setm(t, r);
1884  if (needResult) result = p_Add_q(result, p_Copy(t, r), r);
1885  p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r);
1886  }
1887  return result;
1888 }
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:587

◆ p_Power()

poly p_Power ( poly  p,
int  i,
const ring  r 
)

Definition at line 2193 of file p_polys.cc.

2194 {
2195  poly rc=NULL;
2196 
2197  if (i==0)
2198  {
2199  p_Delete(&p,r);
2200  return p_One(r);
2201  }
2202 
2203  if(p!=NULL)
2204  {
2205  if ( (i > 0) && ((unsigned long ) i > (r->bitmask))
2206  #ifdef HAVE_SHIFTBBA
2207  && (!rIsLPRing(r))
2208  #endif
2209  )
2210  {
2211  Werror("exponent %d is too large, max. is %ld",i,r->bitmask);
2212  return NULL;
2213  }
2214  switch (i)
2215  {
2216 // cannot happen, see above
2217 // case 0:
2218 // {
2219 // rc=pOne();
2220 // pDelete(&p);
2221 // break;
2222 // }
2223  case 1:
2224  rc=p;
2225  break;
2226  case 2:
2227  rc=p_Mult_q(p_Copy(p,r),p,r);
2228  break;
2229  default:
2230  if (i < 0)
2231  {
2232  p_Delete(&p,r);
2233  return NULL;
2234  }
2235  else
2236  {
2237 #ifdef HAVE_PLURAL
2238  if (rIsNCRing(r)) /* in the NC case nothing helps :-( */
2239  {
2240  int j=i;
2241  rc = p_Copy(p,r);
2242  while (j>1)
2243  {
2244  rc = p_Mult_q(p_Copy(p,r),rc,r);
2245  j--;
2246  }
2247  p_Delete(&p,r);
2248  return rc;
2249  }
2250 #endif
2251  rc = pNext(p);
2252  if (rc == NULL)
2253  return p_MonPower(p,i,r);
2254  /* else: binom ?*/
2255  int char_p=rInternalChar(r);
2256  if ((char_p>0) && (i>char_p)
2257  && ((rField_is_Zp(r,char_p)
2258  || (rField_is_Zp_a(r,char_p)))))
2259  {
2260  poly h=p_Pow_charp(p_Copy(p,r),char_p,r);
2261  int rest=i-char_p;
2262  while (rest>=char_p)
2263  {
2264  rest-=char_p;
2265  h=p_Mult_q(h,p_Pow_charp(p_Copy(p,r),char_p,r),r);
2266  }
2267  poly res=h;
2268  if (rest>0)
2269  res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r);
2270  p_Delete(&p,r);
2271  return res;
2272  }
2273  if ((pNext(rc) != NULL)
2274  || rField_is_Ring(r)
2275  )
2276  return p_Pow(p,i,r);
2277  if ((char_p==0) || (i<=char_p))
2278  return p_TwoMonPower(p,i,r);
2279  return p_Pow(p,i,r);
2280  }
2281  /*end default:*/
2282  }
2283  }
2284  return rc;
2285 }
poly p_Power(poly p, int i, const ring r)
Definition: p_polys.cc:2193
static poly p_TwoMonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:2102
static poly p_Pow_charp(poly p, int i, const ring r)
Definition: p_polys.cc:2181
static poly p_MonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:1996
static poly p_Pow(poly p, int i, const ring r)
Definition: p_polys.cc:2167
void Werror(const char *fmt,...)
Definition: reporter.cc:189
static int rInternalChar(const ring r)
Definition: ring.h:690
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411

◆ p_ProjectiveUnique()

void p_ProjectiveUnique ( poly  p,
const ring  r 
)

Definition at line 3208 of file p_polys.cc.

3209 {
3210  if( ph == NULL )
3211  return;
3212 
3213  const coeffs C = r->cf;
3214 
3215  number h;
3216  poly p;
3217 
3218  if (nCoeff_is_Ring(C))
3219  {
3220  p_ContentForGB(ph,r);
3221  if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3222  assume( n_GreaterZero(pGetCoeff(ph),C) );
3223  return;
3224  }
3225 
3227  {
3228  if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3229  return;
3230  }
3231  p = ph;
3232 
3233  assume(p != NULL);
3234 
3235  if(pNext(p)==NULL) // a monomial
3236  {
3237  p_SetCoeff(p, n_Init(1, C), r);
3238  return;
3239  }
3240 
3241  assume(pNext(p)!=NULL);
3242 
3243  if(!nCoeff_is_Q(C) && !nCoeff_is_transExt(C))
3244  {
3245  h = p_GetCoeff(p, C);
3246  number hInv = n_Invers(h, C);
3247  pIter(p);
3248  while (p!=NULL)
3249  {
3250  p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r);
3251  pIter(p);
3252  }
3253  n_Delete(&hInv, C);
3254  p = ph;
3255  p_SetCoeff(p, n_Init(1, C), r);
3256  }
3257 
3258  p_Cleardenom(ph, r); //removes also Content
3259 
3260 
3261  /* normalize ph over a transcendental extension s.t.
3262  lead (ph) is > 0 if extRing->cf == Q
3263  or lead (ph) is monic if extRing->cf == Zp*/
3264  if (nCoeff_is_transExt(C))
3265  {
3266  p= ph;
3267  h= p_GetCoeff (p, C);
3268  fraction f = (fraction) h;
3269  number n=p_GetCoeff (NUM (f),C->extRing->cf);
3270  if (rField_is_Q (C->extRing))
3271  {
3272  if (!n_GreaterZero(n,C->extRing->cf))
3273  {
3274  p=p_Neg (p,r);
3275  }
3276  }
3277  else if (rField_is_Zp(C->extRing))
3278  {
3279  if (!n_IsOne (n, C->extRing->cf))
3280  {
3281  n=n_Invers (n,C->extRing->cf);
3282  nMapFunc nMap;
3283  nMap= n_SetMap (C->extRing->cf, C);
3284  number ninv= nMap (n,C->extRing->cf, C);
3285  p=__p_Mult_nn (p, ninv, r);
3286  n_Delete (&ninv, C);
3287  n_Delete (&n, C->extRing->cf);
3288  }
3289  }
3290  p= ph;
3291  }
3292 
3293  return;
3294 }
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:730
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
Definition: coeffs.h:800
poly p_Cleardenom(poly p, const ring r)
Definition: p_polys.cc:2910

◆ p_Read()

const char* p_Read ( const char *  s,
poly &  p,
const ring  r 
)

Definition at line 1370 of file p_polys.cc.

1371 {
1372  if (r==NULL) { rc=NULL;return st;}
1373  int i,j;
1374  rc = p_Init(r);
1375  const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf);
1376  if (s==st)
1377  /* i.e. it does not start with a coeff: test if it is a ringvar*/
1378  {
1379  j = r_IsRingVar(s,r->names,r->N);
1380  if (j >= 0)
1381  {
1382  p_IncrExp(rc,1+j,r);
1383  while (*s!='\0') s++;
1384  goto done;
1385  }
1386  }
1387  while (*s!='\0')
1388  {
1389  char ss[2];
1390  ss[0] = *s++;
1391  ss[1] = '\0';
1392  j = r_IsRingVar(ss,r->names,r->N);
1393  if (j >= 0)
1394  {
1395  const char *s_save=s;
1396  s = eati(s,&i);
1397  if (((unsigned long)i) > r->bitmask/2)
1398  {
1399  // exponent to large: it is not a monomial
1400  p_LmDelete(&rc,r);
1401  return s_save;
1402  }
1403  p_AddExp(rc,1+j, (long)i, r);
1404  }
1405  else
1406  {
1407  // 1st char of is not a varname
1408  // We return the parsed polynomial nevertheless. This is needed when
1409  // we are parsing coefficients in a rational function field.
1410  s--;
1411  break;
1412  }
1413  }
1414 done:
1415  if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r);
1416  else
1417  {
1418 #ifdef HAVE_PLURAL
1419  // in super-commutative ring
1420  // squares of anti-commutative variables are zeroes!
1421  if(rIsSCA(r))
1422  {
1423  const unsigned int iFirstAltVar = scaFirstAltVar(r);
1424  const unsigned int iLastAltVar = scaLastAltVar(r);
1425 
1426  assume(rc != NULL);
1427 
1428  for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++)
1429  if( p_GetExp(rc, k, r) > 1 )
1430  {
1431  p_LmDelete(&rc, r);
1432  goto finish;
1433  }
1434  }
1435 #endif
1436 
1437  p_Setm(rc,r);
1438  }
1439 finish:
1440  return s;
1441 }
static FORCE_INLINE const char * n_Read(const char *s, number *a, const coeffs r)
!!! Recommendation: This method is too cryptic to be part of the user- !!! interface....
Definition: coeffs.h:598
const char * eati(const char *s, int *i)
Definition: reporter.cc:373
static bool rIsSCA(const ring r)
Definition: nc.h:190
static long p_IncrExp(poly p, int v, ring r)
Definition: p_polys.h:591
int r_IsRingVar(const char *n, char **names, int N)
Definition: ring.cc:212
static short scaLastAltVar(ring r)
Definition: sca.h:25
static short scaFirstAltVar(ring r)
Definition: sca.h:18

◆ p_Series()

poly p_Series ( int  n,
poly  p,
poly  u,
intvec w,
const ring  R 
)

Definition at line 4563 of file p_polys.cc.

4564 {
4565  int *ww=iv2array(w,R);
4566  if(p!=NULL)
4567  {
4568  if(u==NULL)
4569  p=p_JetW(p,n,ww,R);
4570  else
4571  p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R);
4572  }
4573  omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4574  return p;
4575 }
static poly p_Invers(int n, poly u, intvec *w, const ring R)
Definition: p_polys.cc:4534
int p_MinDeg(poly p, intvec *w, const ring R)
Definition: p_polys.cc:4513
poly p_JetW(poly p, int m, int *w, const ring R)
Definition: p_polys.cc:4495
int * iv2array(intvec *iv, const ring R)
Definition: weight.cc:200

◆ p_SetCoeff()

static number p_SetCoeff ( poly  p,
number  n,
ring  r 
)
inlinestatic

Definition at line 412 of file p_polys.h.

413 {
414  p_LmCheckPolyRing2(p, r);
415  n_Delete(&(p->coef), r->cf);
416  (p)->coef=n;
417  return n;
418 }

◆ p_SetComp()

static unsigned long p_SetComp ( poly  p,
unsigned long  c,
ring  r 
)
inlinestatic

Definition at line 247 of file p_polys.h.

248 {
249  p_LmCheckPolyRing2(p, r);
250  if (r->pCompIndex>=0) __p_GetComp(p,r) = c;
251  return c;
252 }

◆ p_SetCompP() [1/2]

static void p_SetCompP ( poly  p,
int  i,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 281 of file p_polys.h.

282 {
283  if (p != NULL)
284  {
285  p_SetComp(p, i, lmRing);
286  p_SetmComp(p, lmRing);
287  p_SetCompP(pNext(p), i, tailRing);
288  }
289 }

◆ p_SetCompP() [2/2]

static void p_SetCompP ( poly  p,
int  i,
ring  r 
)
inlinestatic

Definition at line 254 of file p_polys.h.

255 {
256  if (p != NULL)
257  {
258  p_Test(p, r);
260  {
261  do
262  {
263  p_SetComp(p, i, r);
264  p_SetmComp(p, r);
265  pIter(p);
266  }
267  while (p != NULL);
268  }
269  else
270  {
271  do
272  {
273  p_SetComp(p, i, r);
274  pIter(p);
275  }
276  while(p != NULL);
277  }
278  }
279 }
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition: ring.cc:1993

◆ p_SetExp() [1/3]

static long p_SetExp ( poly  p,
const int  v,
const long  e,
const ring  r 
)
inlinestatic

set v^th exponent for a monomial

Definition at line 582 of file p_polys.h.

583 {
584  p_LmCheckPolyRing2(p, r);
585  pAssume2(v>0 && v <= r->N);
586  pAssume2(r->VarOffset[v] != -1);
587  return p_SetExp(p, e, r->bitmask, r->VarOffset[v]);
588 }

◆ p_SetExp() [2/3]

static long p_SetExp ( poly  p,
const long  e,
const ring  r,
const int  VarOffset 
)
inlinestatic

Definition at line 562 of file p_polys.h.

563 {
564  p_LmCheckPolyRing2(p, r);
565  pAssume2(VarOffset != -1);
566  return p_SetExp(p, e, r->bitmask, VarOffset);
567 }

◆ p_SetExp() [3/3]

static unsigned long p_SetExp ( poly  p,
const unsigned long  e,
const unsigned long  iBitmask,
const int  VarOffset 
)
inlinestatic

set a single variable exponent @Note: VarOffset encodes the position in p->exp

See also
p_GetExp

Definition at line 488 of file p_polys.h.

489 {
490  pAssume2(e>=0);
491  pAssume2(e<=iBitmask);
492  pAssume2((VarOffset >> (24 + 6)) == 0);
493 
494  // shift e to the left:
495  REGISTER int shift = VarOffset >> 24;
496  unsigned long ee = e << shift /*(VarOffset >> 24)*/;
497  // find the bits in the exponent vector
498  REGISTER int offset = (VarOffset & 0xffffff);
499  // clear the bits in the exponent vector:
500  p->exp[offset] &= ~( iBitmask << shift );
501  // insert e with |
502  p->exp[ offset ] |= ee;
503  return e;
504 }

◆ p_SetExpV()

static void p_SetExpV ( poly  p,
int *  ev,
const ring  r 
)
inlinestatic

Definition at line 1544 of file p_polys.h.

1545 {
1546  p_LmCheckPolyRing1(p, r);
1547  for (unsigned j = r->N; j!=0; j--)
1548  p_SetExp(p, j, ev[j], r);
1549 
1550  if(ev[0]!=0) p_SetComp(p, ev[0],r);
1551  p_Setm(p, r);
1552 }

◆ p_SetExpVL()

static void p_SetExpVL ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1553 of file p_polys.h.

1554 {
1555  p_LmCheckPolyRing1(p, r);
1556  for (unsigned j = r->N; j!=0; j--)
1557  p_SetExp(p, j, ev[j-1], r);
1558  p_SetComp(p, 0,r);
1559 
1560  p_Setm(p, r);
1561 }

◆ p_SetExpVLV()

static void p_SetExpVLV ( poly  p,
int64 ev,
int64  comp,
const ring  r 
)
inlinestatic

Definition at line 1564 of file p_polys.h.

1565 {
1566  p_LmCheckPolyRing1(p, r);
1567  for (unsigned j = r->N; j!=0; j--)
1568  p_SetExp(p, j, ev[j-1], r);
1569  p_SetComp(p, comp,r);
1570 
1571  p_Setm(p, r);
1572 }
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials

◆ p_Setm()

static void p_Setm ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 233 of file p_polys.h.

234 {
235  p_CheckRing2(r);
236  r->p_Setm(p, r);
237 }

◆ p_SetModDeg()

void p_SetModDeg ( intvec w,
ring  r 
)

Definition at line 3751 of file p_polys.cc.

3752 {
3753  if (w!=NULL)
3754  {
3755  r->pModW = w;
3756  pOldFDeg = r->pFDeg;
3757  pOldLDeg = r->pLDeg;
3758  pOldLexOrder = r->pLexOrder;
3759  pSetDegProcs(r,pModDeg);
3760  r->pLexOrder = TRUE;
3761  }
3762  else
3763  {
3764  r->pModW = NULL;
3766  r->pLexOrder = pOldLexOrder;
3767  }
3768 }
STATIC_VAR pLDegProc pOldLDeg
Definition: p_polys.cc:3739
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition: p_polys.cc:3727
STATIC_VAR BOOLEAN pOldLexOrder
Definition: p_polys.cc:3740
STATIC_VAR pFDegProc pOldFDeg
Definition: p_polys.cc:3738
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition: p_polys.cc:3715
static long pModDeg(poly p, ring r)
Definition: p_polys.cc:3742

◆ p_ShallowCopyDelete()

static poly p_ShallowCopyDelete ( poly  p,
const ring  r,
omBin  bin 
)
inlinestatic

Definition at line 928 of file p_polys.h.

929 {
930  p_LmCheckPolyRing2(p, r);
931  pAssume2(omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
932  return r->p_Procs->p_ShallowCopyDelete(p, r, bin);
933 }

◆ p_ShallowDelete()

void p_ShallowDelete ( poly *  p,
const ring  r 
)

◆ p_Shift()

void p_Shift ( poly *  p,
int  i,
const ring  r 
)

shifts components of the vector p by i

Definition at line 4771 of file p_polys.cc.

4772 {
4773  poly qp1 = *p,qp2 = *p;/*working pointers*/
4774  int j = p_MaxComp(*p,r),k = p_MinComp(*p,r);
4775 
4776  if (j+i < 0) return ;
4777  BOOLEAN toPoly= ((j == -i) && (j == k));
4778  while (qp1 != NULL)
4779  {
4780  if (toPoly || (__p_GetComp(qp1,r)+i > 0))
4781  {
4782  p_AddComp(qp1,i,r);
4783  p_SetmComp(qp1,r);
4784  qp2 = qp1;
4785  pIter(qp1);
4786  }
4787  else
4788  {
4789  if (qp2 == *p)
4790  {
4791  pIter(*p);
4792  p_LmDelete(&qp2,r);
4793  qp2 = *p;
4794  qp1 = *p;
4795  }
4796  else
4797  {
4798  qp2->next = qp1->next;
4799  if (qp1!=NULL) p_LmDelete(&qp1,r);
4800  qp1 = qp2->next;
4801  }
4802  }
4803  }
4804 }
return
Definition: cfGcdAlgExt.cc:218
static unsigned long p_AddComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:447

◆ p_SimpleContent()

void p_SimpleContent ( poly  p,
int  s,
const ring  r 
)

Definition at line 2629 of file p_polys.cc.

2630 {
2631  if(TEST_OPT_CONTENTSB) return;
2632  if (ph==NULL) return;
2633  if (pNext(ph)==NULL)
2634  {
2635  p_SetCoeff(ph,n_Init(1,r->cf),r);
2636  return;
2637  }
2638  if (pNext(pNext(ph))==NULL)
2639  {
2640  return;
2641  }
2642  if (!(rField_is_Q(r))
2643  && (!rField_is_Q_a(r))
2644  && (!rField_is_Zp_a(r))
2645  && (!rField_is_Z(r))
2646  )
2647  {
2648  return;
2649  }
2650  number d=p_InitContent(ph,r);
2651  number h=d;
2652  if (n_Size(d,r->cf)<=smax)
2653  {
2654  n_Delete(&h,r->cf);
2655  //if (TEST_OPT_PROT) PrintS("G");
2656  return;
2657  }
2658 
2659  poly p=ph;
2660  if (smax==1) smax=2;
2661  while (p!=NULL)
2662  {
2663 #if 1
2664  d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2665  n_Delete(&h,r->cf);
2666  h = d;
2667 #else
2668  n_InpGcd(h,pGetCoeff(p),r->cf);
2669 #endif
2670  if(n_Size(h,r->cf)<smax)
2671  {
2672  //if (TEST_OPT_PROT) PrintS("g");
2673  n_Delete(&h,r->cf);
2674  return;
2675  }
2676  pIter(p);
2677  }
2678  p = ph;
2679  if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf);
2680  if(n_IsOne(h,r->cf))
2681  {
2682  n_Delete(&h,r->cf);
2683  return;
2684  }
2685  if (TEST_OPT_PROT) PrintS("c");
2686  while (p!=NULL)
2687  {
2688 #if 1
2689  d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2690  p_SetCoeff(p,d,r);
2691 #else
2692  STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ?
2693 #endif
2694  pIter(p);
2695  }
2696  n_Delete(&h,r->cf);
2697 }
#define TEST_OPT_PROT
Definition: options.h:103

◆ p_Size()

int p_Size ( poly  p,
const ring  r 
)

Definition at line 3318 of file p_polys.cc.

3319 {
3320  int count = 0;
3321  if (r->cf->has_simple_Alloc)
3322  return pLength(p);
3323  while ( p != NULL )
3324  {
3325  count+= n_Size( pGetCoeff( p ), r->cf );
3326  pIter( p );
3327  }
3328  return count;
3329 }
int status int void size_t count
Definition: si_signals.h:59

◆ p_SortAdd()

static poly p_SortAdd ( poly  p,
const ring  r,
BOOLEAN  revert = FALSE 
)
inlinestatic

Definition at line 1219 of file p_polys.h.

1220 {
1221  if (revert) p = pReverse(p);
1222  return sBucketSortAdd(p, r);
1223 }
poly sBucketSortAdd(poly p, const ring r)
Sorts p with bucketSort: p may have equal monomials.
Definition: sbuckets.cc:368

◆ p_SortMerge()

static poly p_SortMerge ( poly  p,
const ring  r,
BOOLEAN  revert = FALSE 
)
inlinestatic

Definition at line 1229 of file p_polys.h.

1230 {
1231  if (revert) p = pReverse(p);
1232  return sBucketSortMerge(p, r);
1233 }
poly sBucketSortMerge(poly p, const ring r)
Sorts p with bucketSort: assumes all monomials of p are different.
Definition: sbuckets.cc:332

◆ p_Split()

void p_Split ( poly  p,
poly *  r 
)

Definition at line 1320 of file p_polys.cc.

1321 {
1322  *h=pNext(p);
1323  pNext(p)=NULL;
1324 }

◆ p_String() [1/2]

char* p_String ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 322 of file polys0.cc.

323 {
324  StringSetS("");
325  p_String0(p, lmRing, tailRing);
326  return StringEndS();
327 }
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:223
void StringSetS(const char *st)
Definition: reporter.cc:128
char * StringEndS()
Definition: reporter.cc:151

◆ p_String() [2/2]

static char* p_String ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1240 of file p_polys.h.

1241 {
1242  return p_String(p, p_ring, p_ring);
1243 }
char * p_String(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:322

◆ p_String0() [1/2]

void p_String0 ( poly  p,
ring  lmRing,
ring  tailRing 
)

print p according to ShortOut in lmRing & tailRing

Definition at line 223 of file polys0.cc.

224 {
225  if (p == NULL)
226  {
227  StringAppendS("0");
228  return;
229  }
230  p_Normalize(p,lmRing);
231  if ((n_GetChar(lmRing->cf) == 0)
232  && (nCoeff_is_transExt(lmRing->cf)))
233  p_Normalize(p,lmRing); /* Manual/absfact.tst */
234 #ifdef HAVE_SHIFTBBA
235  if(lmRing->isLPring)
236  {
237  if ((p_GetComp(p, lmRing) == 0) || (!lmRing->VectorOut))
238  {
239  writemonLP(p,0, lmRing);
240  p = pNext(p);
241  while (p!=NULL)
242  {
243  assume((p->coef==NULL)||(!n_IsZero(p->coef,tailRing->cf)));
244  if ((p->coef==NULL)||n_GreaterZero(p->coef,tailRing->cf))
245  StringAppendS("+");
246  writemonLP(p,0, tailRing);
247  p = pNext(p);
248  }
249  return;
250  }
251  }
252  else
253 #endif
254  {
255  if ((p_GetComp(p, lmRing) == 0) || (!lmRing->VectorOut))
256  {
257  writemon(p,0, lmRing);
258  p = pNext(p);
259  while (p!=NULL)
260  {
261  assume((p->coef==NULL)||(!n_IsZero(p->coef,tailRing->cf)));
262  if ((p->coef==NULL)||n_GreaterZero(p->coef,tailRing->cf))
263  StringAppendS("+");
264  writemon(p,0, tailRing);
265  p = pNext(p);
266  }
267  return;
268  }
269  }
270 
271  long k = 1;
272  StringAppendS("[");
273 #ifdef HAVE_SHIFTBBA
274  if(lmRing->isLPring)
275  {
276  loop
277  {
278  while (k < p_GetComp(p,lmRing))
279  {
280  StringAppendS("0,");
281  k++;
282  }
283  writemonLP(p,k,lmRing);
284  pIter(p);
285  while ((p!=NULL) && (k == p_GetComp(p, tailRing)))
286  {
287  if (n_GreaterZero(p->coef,tailRing->cf)) StringAppendS("+");
288  writemonLP(p,k,tailRing);
289  pIter(p);
290  }
291  if (p == NULL) break;
292  StringAppendS(",");
293  k++;
294  }
295  }
296  else
297 #endif
298  {
299  loop
300  {
301  while (k < p_GetComp(p,lmRing))
302  {
303  StringAppendS("0,");
304  k++;
305  }
306  writemon(p,k,lmRing);
307  pIter(p);
308  while ((p!=NULL) && (k == p_GetComp(p, tailRing)))
309  {
310  if (n_GreaterZero(p->coef,tailRing->cf)) StringAppendS("+");
311  writemon(p,k,tailRing);
312  pIter(p);
313  }
314  if (p == NULL) break;
315  StringAppendS(",");
316  k++;
317  }
318  }
319  StringAppendS("]");
320 }
static void writemon(poly p, int ko, const ring r)
Definition: polys0.cc:24
static void writemonLP(poly p, int ko, const ring r)
Definition: polys0.cc:104
void StringAppendS(const char *st)
Definition: reporter.cc:107

◆ p_String0() [2/2]

static void p_String0 ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1244 of file p_polys.h.

1245 {
1246  p_String0(p, p_ring, p_ring);
1247 }
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:223

◆ p_String0Long()

void p_String0Long ( const poly  p,
ring  lmRing,
ring  tailRing 
)

print p in a long way

print p in a long way

Definition at line 203 of file polys0.cc.

204 {
205  // NOTE: the following (non-thread-safe!) UGLYNESS
206  // (changing naRing->ShortOut for a while) is due to Hans!
207  // Just think of other ring using the VERY SAME naRing and possible
208  // side-effects...
209  // but this is not a problem: i/o is not thread-safe anyway.
210  const BOOLEAN bLMShortOut = rShortOut(lmRing);
211  const BOOLEAN bTAILShortOut = rShortOut(tailRing);
212 
213  lmRing->ShortOut = FALSE;
214  tailRing->ShortOut = FALSE;
215 
216  p_String0(p, lmRing, tailRing);
217 
218  lmRing->ShortOut = bLMShortOut;
219  tailRing->ShortOut = bTAILShortOut;
220 }
static BOOLEAN rShortOut(const ring r)
Definition: ring.h:582

◆ p_String0Short()

void p_String0Short ( const poly  p,
ring  lmRing,
ring  tailRing 
)

print p in a short way, if possible

print p in a short way, if possible

Definition at line 184 of file polys0.cc.

185 {
186  // NOTE: the following (non-thread-safe!) UGLYNESS
187  // (changing naRing->ShortOut for a while) is due to Hans!
188  // Just think of other ring using the VERY SAME naRing and possible
189  // side-effects...
190  const BOOLEAN bLMShortOut = rShortOut(lmRing);
191  const BOOLEAN bTAILShortOut = rShortOut(tailRing);
192 
193  lmRing->ShortOut = rCanShortOut(lmRing);
194  tailRing->ShortOut = rCanShortOut(tailRing);
195 
196  p_String0(p, lmRing, tailRing);
197 
198  lmRing->ShortOut = bLMShortOut;
199  tailRing->ShortOut = bTAILShortOut;
200 }
static BOOLEAN rCanShortOut(const ring r)
Definition: ring.h:587

◆ p_Sub()

poly p_Sub ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1986 of file p_polys.cc.

1987 {
1988  return p_Add_q(p1, p_Neg(p2,r),r);
1989 }

◆ p_SubComp()

static unsigned long p_SubComp ( poly  p,
unsigned long  v,
ring  r 
)
inlinestatic

Definition at line 453 of file p_polys.h.

454 {
455  p_LmCheckPolyRing2(p, r);
457  _pPolyAssume2(__p_GetComp(p,r) >= v,p,r);
458  return __p_GetComp(p,r) -= v;
459 }

◆ p_SubExp()

static long p_SubExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 613 of file p_polys.h.

614 {
615  p_LmCheckPolyRing2(p, r);
616  long e = p_GetExp(p,v,r);
617  pAssume2(e >= ee);
618  e -= ee;
619  return p_SetExp(p,v,e,r);
620 }

◆ p_Subst()

poly p_Subst ( poly  p,
int  n,
poly  e,
const ring  r 
)

Definition at line 4023 of file p_polys.cc.

4024 {
4025 #ifdef HAVE_SHIFTBBA
4026  // also don't even use p_Subst0 for Letterplace
4027  if (rIsLPRing(r))
4028  {
4029  poly subst = p_LPSubst(p, n, e, r);
4030  p_Delete(&p, r);
4031  return subst;
4032  }
4033 #endif
4034 
4035  if (e == NULL) return p_Subst0(p, n,r);
4036 
4037  if (p_IsConstant(e,r))
4038  {
4039  if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r);
4040  else return p_Subst2(p, n, pGetCoeff(e),r);
4041  }
4042 
4043 #ifdef HAVE_PLURAL
4044  if (rIsPluralRing(r))
4045  {
4046  return nc_pSubst(p,n,e,r);
4047  }
4048 #endif
4049 
4050  int exponent,i;
4051  poly h, res, m;
4052  int *me,*ee;
4053  number nu,nu1;
4054 
4055  me=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4056  ee=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4057  if (e!=NULL) p_GetExpV(e,ee,r);
4058  res=NULL;
4059  h=p;
4060  while (h!=NULL)
4061  {
4062  if ((e!=NULL) || (p_GetExp(h,n,r)==0))
4063  {
4064  m=p_Head(h,r);
4065  p_GetExpV(m,me,r);
4066  exponent=me[n];
4067  me[n]=0;
4068  for(i=rVar(r);i>0;i--)
4069  me[i]+=exponent*ee[i];
4070  p_SetExpV(m,me,r);
4071  if (e!=NULL)
4072  {
4073  n_Power(pGetCoeff(e),exponent,&nu,r->cf);
4074  nu1=n_Mult(pGetCoeff(m),nu,r->cf);
4075  n_Delete(&nu,r->cf);
4076  p_SetCoeff(m,nu1,r);
4077  }
4078  res=p_Add_q(res,m,r);
4079  }
4080  p_LmDelete(&h,r);
4081  }
4082  omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int));
4083  omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int));
4084  return res;
4085 }
CanonicalForm subst(const CanonicalForm &f, const CFList &a, const CFList &b, const CanonicalForm &Rstar, bool isFunctionField)
poly nc_pSubst(poly p, int n, poly e, const ring r)
substitute the n-th variable by e in p destroy p e is not a constant
Definition: old.gring.cc:3203
static poly p_Subst0(poly p, int n, const ring r)
Definition: p_polys.cc:3998
static poly p_Subst1(poly p, int n, const ring r)
Definition: p_polys.cc:3930
static poly p_Subst2(poly p, int n, number e, const ring r)
Definition: p_polys.cc:3957
poly p_LPSubst(poly p, int n, poly e, const ring r)
Definition: shiftop.cc:912

◆ p_TakeOutComp() [1/2]

poly p_TakeOutComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3513 of file p_polys.cc.

3514 {
3515  poly q = *p,qq=NULL,result = NULL;
3516 
3517  if (q==NULL) return NULL;
3518  BOOLEAN use_setmcomp=rOrd_SetCompRequiresSetm(r);
3519  if (__p_GetComp(q,r)==k)
3520  {
3521  result = q;
3522  do
3523  {
3524  p_SetComp(q,0,r);
3525  if (use_setmcomp) p_SetmComp(q,r);
3526  qq = q;
3527  pIter(q);
3528  }
3529  while ((q!=NULL) && (__p_GetComp(q,r)==k));
3530  *p = q;
3531  pNext(qq) = NULL;
3532  }
3533  if (q==NULL) return result;
3534  if (__p_GetComp(q,r) > k)
3535  {
3536  p_SubComp(q,1,r);
3537  if (use_setmcomp) p_SetmComp(q,r);
3538  }
3539  poly pNext_q;
3540  while ((pNext_q=pNext(q))!=NULL)
3541  {
3542  if (__p_GetComp(pNext_q,r)==k)
3543  {
3544  if (result==NULL)
3545  {
3546  result = pNext_q;
3547  qq = result;
3548  }
3549  else
3550  {
3551  pNext(qq) = pNext_q;
3552  pIter(qq);
3553  }
3554  pNext(q) = pNext(pNext_q);
3555  pNext(qq) =NULL;
3556  p_SetComp(qq,0,r);
3557  if (use_setmcomp) p_SetmComp(qq,r);
3558  }
3559  else
3560  {
3561  /*pIter(q);*/ q=pNext_q;
3562  if (__p_GetComp(q,r) > k)
3563  {
3564  p_SubComp(q,1,r);
3565  if (use_setmcomp) p_SetmComp(q,r);
3566  }
3567  }
3568  }
3569  return result;
3570 }

◆ p_TakeOutComp() [2/2]

void p_TakeOutComp ( poly *  p,
long  comp,
poly *  q,
int *  lq,
const ring  r 
)

Definition at line 3574 of file p_polys.cc.

3575 {
3576  spolyrec pp, qq;
3577  poly p, q, p_prev;
3578  int l = 0;
3579 
3580 #ifndef SING_NDEBUG
3581  int lp = pLength(*r_p);
3582 #endif
3583 
3584  pNext(&pp) = *r_p;
3585  p = *r_p;
3586  p_prev = &pp;
3587  q = &qq;
3588 
3589  while(p != NULL)
3590  {
3591  while (__p_GetComp(p,r) == comp)
3592  {
3593  pNext(q) = p;
3594  pIter(q);
3595  p_SetComp(p, 0,r);
3596  p_SetmComp(p,r);
3597  pIter(p);
3598  l++;
3599  if (p == NULL)
3600  {
3601  pNext(p_prev) = NULL;
3602  goto Finish;
3603  }
3604  }
3605  pNext(p_prev) = p;
3606  p_prev = p;
3607  pIter(p);
3608  }
3609 
3610  Finish:
3611  pNext(q) = NULL;
3612  *r_p = pNext(&pp);
3613  *r_q = pNext(&qq);
3614  *lq = l;
3615 #ifndef SING_NDEBUG
3616  assume(pLength(*r_p) + pLength(*r_q) == (unsigned)lp);
3617 #endif
3618  p_Test(*r_p,r);
3619  p_Test(*r_q,r);
3620 }

◆ p_TakeOutComp1()

poly p_TakeOutComp1 ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3462 of file p_polys.cc.

3463 {
3464  poly q = *p;
3465 
3466  if (q==NULL) return NULL;
3467 
3468  poly qq=NULL,result = NULL;
3469  long unsigned kk=k;
3470  if (__p_GetComp(q,r)==kk)
3471  {
3472  result = q; /* *p */
3473  while ((q!=NULL) && (__p_GetComp(q,r)==kk))
3474  {
3475  p_SetComp(q,0,r);
3476  p_SetmComp(q,r);
3477  qq = q;
3478  pIter(q);
3479  }
3480  *p = q;
3481  pNext(qq) = NULL;
3482  }
3483  if (q==NULL) return result;
3484 // if (pGetComp(q) > k) pGetComp(q)--;
3485  while (pNext(q)!=NULL)
3486  {
3487  if (__p_GetComp(pNext(q),r)==kk)
3488  {
3489  if (result==NULL)
3490  {
3491  result = pNext(q);
3492  qq = result;
3493  }
3494  else
3495  {
3496  pNext(qq) = pNext(q);
3497  pIter(qq);
3498  }
3499  pNext(q) = pNext(pNext(q));
3500  pNext(qq) =NULL;
3501  p_SetComp(qq,0,r);
3502  p_SetmComp(qq,r);
3503  }
3504  else
3505  {
3506  pIter(q);
3507 // if (pGetComp(q) > k) pGetComp(q)--;
3508  }
3509  }
3510  return result;
3511 }

◆ p_Totaldegree()

static long p_Totaldegree ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1507 of file p_polys.h.

1508 {
1509  p_LmCheckPolyRing1(p, r);
1510  unsigned long s = p_GetTotalDegree(p->exp[r->VarL_Offset[0]],
1511  r,
1512  r->ExpPerLong);
1513  for (unsigned i=r->VarL_Size-1; i!=0; i--)
1514  {
1515  s += p_GetTotalDegree(p->exp[r->VarL_Offset[i]], r,r->ExpPerLong);
1516  }
1517  return (long)s;
1518 }
static unsigned long p_GetTotalDegree(const unsigned long l, const ring r, const int number_of_exps)
Definition: p_polys.h:810

◆ p_Var()

int p_Var ( poly  mi,
const ring  r 
)

Definition at line 4721 of file p_polys.cc.

4722 {
4723  if (m==NULL) return 0;
4724  if (pNext(m)!=NULL) return 0;
4725  int i,e=0;
4726  for (i=rVar(r); i>0; i--)
4727  {
4728  int exp=p_GetExp(m,i,r);
4729  if (exp==1)
4730  {
4731  if (e==0) e=i;
4732  else return 0;
4733  }
4734  else if (exp!=0)
4735  {
4736  return 0;
4737  }
4738  }
4739  return e;
4740 }

◆ p_Vec2Array()

void p_Vec2Array ( poly  v,
poly *  p,
int  len,
const ring  r 
)

julia: vector to already allocated array (len=p_MaxComp(v,r))

julia: vector to already allocated array (len=p_MaxComp(v,r))

Definition at line 3673 of file p_polys.cc.

3674 {
3675  poly h;
3676  int k;
3677 
3678  for(int i=len-1;i>=0;i--) p[i]=NULL;
3679  while (v!=NULL)
3680  {
3681  h=p_Head(v,r);
3682  k=__p_GetComp(h,r);
3683  if (k>len) { Werror("wrong rank:%d, should be %d",len,k); }
3684  else
3685  {
3686  p_SetComp(h,0,r);
3687  p_Setm(h,r);
3688  pNext(h)=p[k-1];p[k-1]=h;
3689  }
3690  pIter(v);
3691  }
3692  for(int i=len-1;i>=0;i--)
3693  {
3694  if (p[i]!=NULL) p[i]=pReverse(p[i]);
3695  }
3696 }

◆ p_Vec2Poly()

poly p_Vec2Poly ( poly  v,
int  k,
const ring  r 
)

Definition at line 3651 of file p_polys.cc.

3652 {
3653  poly h;
3654  poly res=NULL;
3655  long unsigned kk=k;
3656 
3657  while (v!=NULL)
3658  {
3659  if (__p_GetComp(v,r)==kk)
3660  {
3661  h=p_Head(v,r);
3662  p_SetComp(h,0,r);
3663  pNext(h)=res;res=h;
3664  }
3665  pIter(v);
3666  }
3667  if (res!=NULL) res=pReverse(res);
3668  return res;
3669 }

◆ p_Vec2Polys()

void p_Vec2Polys ( poly  v,
poly **  p,
int *  len,
const ring  r 
)

Definition at line 3703 of file p_polys.cc.

3704 {
3705  *len=p_MaxComp(v,r);
3706  if (*len==0) *len=1;
3707  *p=(poly*)omAlloc((*len)*sizeof(poly));
3708  p_Vec2Array(v,*p,*len,r);
3709 }
void p_Vec2Array(poly v, poly *p, int len, const ring r)
vector to already allocated array (len>=p_MaxComp(v,r))
Definition: p_polys.cc:3673

◆ p_VectorHasUnit()

void p_VectorHasUnit ( poly  p,
int *  k,
int *  len,
const ring  r 
)

Definition at line 3429 of file p_polys.cc.

3430 {
3431  poly q=p,qq;
3432  int j=0;
3433  long unsigned i;
3434 
3435  *len = 0;
3436  while (q!=NULL)
3437  {
3438  if (p_LmIsConstantComp(q,r))
3439  {
3440  i = __p_GetComp(q,r);
3441  qq = p;
3442  while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3443  if (qq == q)
3444  {
3445  j = 0;
3446  while (qq!=NULL)
3447  {
3448  if (__p_GetComp(qq,r)==i) j++;
3449  pIter(qq);
3450  }
3451  if ((*len == 0) || (j<*len))
3452  {
3453  *len = j;
3454  *k = i;
3455  }
3456  }
3457  }
3458  pIter(q);
3459  }
3460 }

◆ p_VectorHasUnitB()

BOOLEAN p_VectorHasUnitB ( poly  p,
int *  k,
const ring  r 
)

Definition at line 3406 of file p_polys.cc.

3407 {
3408  poly q=p,qq;
3409  long unsigned i;
3410 
3411  while (q!=NULL)
3412  {
3413  if (p_LmIsConstantComp(q,r))
3414  {
3415  i = __p_GetComp(q,r);
3416  qq = p;
3417  while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3418  if (qq == q)
3419  {
3420  *k = i;
3421  return TRUE;
3422  }
3423  }
3424  pIter(q);
3425  }
3426  return FALSE;
3427 }

◆ p_WDegree()

long p_WDegree ( poly  p,
const ring  r 
)

Definition at line 714 of file p_polys.cc.

715 {
716  if (r->firstwv==NULL) return p_Totaldegree(p, r);
717  p_LmCheckPolyRing(p, r);
718  int i;
719  long j =0;
720 
721  for(i=1;i<=r->firstBlockEnds;i++)
722  j+=p_GetExp(p, i, r)*r->firstwv[i-1];
723 
724  for (;i<=rVar(r);i++)
725  j+=p_GetExp(p,i, r)*p_Weight(i, r);
726 
727  return j;
728 }
int p_Weight(int i, const ring r)
Definition: p_polys.cc:705

◆ p_Weight()

int p_Weight ( int  c,
const ring  r 
)

Definition at line 705 of file p_polys.cc.

706 {
707  if ((r->firstwv==NULL) || (i>r->firstBlockEnds))
708  {
709  return 1;
710  }
711  return r->firstwv[i-1];
712 }

◆ p_WFirstTotalDegree()

long p_WFirstTotalDegree ( poly  p,
ring  r 
)

Definition at line 596 of file p_polys.cc.

597 {
598  int i;
599  long sum = 0;
600 
601  for (i=1; i<= r->firstBlockEnds; i++)
602  {
603  sum += p_GetExp(p, i, r)*r->firstwv[i-1];
604  }
605  return sum;
606 }

◆ p_Write() [1/2]

void p_Write ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 342 of file polys0.cc.

343 {
344  p_Write0(p, lmRing, tailRing);
345  PrintLn();
346 }
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:332
void PrintLn()
Definition: reporter.cc:310

◆ p_Write() [2/2]

static void p_Write ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1248 of file p_polys.h.

1249 {
1250  p_Write(p, p_ring, p_ring);
1251 }

◆ p_Write0() [1/2]

void p_Write0 ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 332 of file polys0.cc.

333 {
334  char *s=p_String(p, lmRing, tailRing);
335  PrintS(s);
336  omFree(s);
337 }
char * p_String(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:322

◆ p_Write0() [2/2]

static void p_Write0 ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1252 of file p_polys.h.

1253 {
1254  p_Write0(p, p_ring, p_ring);
1255 }
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:332

◆ p_wrp() [1/2]

void p_wrp ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 373 of file polys0.cc.

374 {
375  poly r;
376 
377  if (p==NULL) PrintS("NULL");
378  else if (pNext(p)==NULL) p_Write0(p, lmRing);
379  else
380  {
381  r = pNext(pNext(p));
382  pNext(pNext(p)) = NULL;
383  p_Write0(p, tailRing);
384  if (r!=NULL)
385  {
386  PrintS("+...");
387  pNext(pNext(p)) = r;
388  }
389  }
390 }

◆ p_wrp() [2/2]

static void p_wrp ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1256 of file p_polys.h.

1257 {
1258  p_wrp(p, p_ring, p_ring);
1259 }
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373

◆ p_WTotaldegree()

long p_WTotaldegree ( poly  p,
const ring  r 
)

Definition at line 613 of file p_polys.cc.

614 {
615  p_LmCheckPolyRing(p, r);
616  int i, k;
617  long j =0;
618 
619  // iterate through each block:
620  for (i=0;r->order[i]!=0;i++)
621  {
622  int b0=r->block0[i];
623  int b1=r->block1[i];
624  switch(r->order[i])
625  {
626  case ringorder_M:
627  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
628  { // in jedem block:
629  j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn;
630  }
631  break;
632  case ringorder_am:
633  b1=si_min(b1,r->N);
634  /* no break, continue as ringorder_a*/
635  case ringorder_a:
636  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
637  { // only one line
638  j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
639  }
640  return j*r->OrdSgn;
641  case ringorder_wp:
642  case ringorder_ws:
643  case ringorder_Wp:
644  case ringorder_Ws:
645  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
646  { // in jedem block:
647  j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
648  }
649  break;
650  case ringorder_lp:
651  case ringorder_ls:
652  case ringorder_rs:
653  case ringorder_dp:
654  case ringorder_ds:
655  case ringorder_Dp:
656  case ringorder_Ds:
657  case ringorder_rp:
658  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
659  {
660  j+= p_GetExp(p,k,r);
661  }
662  break;
663  case ringorder_a64:
664  {
665  int64* w=(int64*)r->wvhdl[i];
666  for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++)
667  {
668  //there should be added a line which checks if w[k]>2^31
669  j+= p_GetExp(p,k+1, r)*(long)w[k];
670  }
671  //break;
672  return j;
673  }
674  case ringorder_c: /* nothing to do*/
675  case ringorder_C: /* nothing to do*/
676  case ringorder_S: /* nothing to do*/
677  case ringorder_s: /* nothing to do*/
678  case ringorder_IS: /* nothing to do */
679  case ringorder_unspec: /* to make clang happy, does not occur*/
680  case ringorder_no: /* to make clang happy, does not occur*/
681  case ringorder_L: /* to make clang happy, does not occur*/
682  case ringorder_aa: /* ignored by p_WTotaldegree*/
683  break;
684  /* no default: all orderings covered */
685  }
686  }
687  return j;
688 }
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:72
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74

◆ pEnlargeSet()

void pEnlargeSet ( poly **  p,
int  length,
int  increment 
)

Definition at line 3774 of file p_polys.cc.

3775 {
3776  poly* h;
3777 
3778  if (*p==NULL)
3779  {
3780  if (increment==0) return;
3781  h=(poly*)omAlloc0(increment*sizeof(poly));
3782  }
3783  else
3784  {
3785  h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly));
3786  if (increment>0)
3787  {
3788  memset(&(h[l]),0,increment*sizeof(poly));
3789  }
3790  }
3791  *p=h;
3792 }
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220

◆ pHaveCommonMonoms()

BOOLEAN pHaveCommonMonoms ( poly  p,
poly  q 
)

Definition at line 175 of file pDebug.cc.

176 {
177  while (p != NULL)
178  {
179  if (pIsMonomOf(q, p))
180  {
181  return TRUE;
182  }
183  pIter(p);
184  }
185  return FALSE;
186 }
BOOLEAN pIsMonomOf(poly p, poly m)
Definition: pDebug.cc:165

◆ pIsMonomOf()

BOOLEAN pIsMonomOf ( poly  p,
poly  m 
)

Definition at line 165 of file pDebug.cc.

166 {
167  if (m == NULL) return TRUE;
168  while (p != NULL)
169  {
170  if (p == m) return TRUE;
171  pIter(p);
172  }
173  return FALSE;
174 }

◆ pLDeg0()

long pLDeg0 ( poly  p,
int *  l,
ring  r 
)

Definition at line 739 of file p_polys.cc.

740 {
741  p_CheckPolyRing(p, r);
742  long unsigned k= p_GetComp(p, r);
743  int ll=1;
744 
745  if (k > 0)
746  {
747  while ((pNext(p)!=NULL) && (__p_GetComp(pNext(p), r)==k))
748  {
749  pIter(p);
750  ll++;
751  }
752  }
753  else
754  {
755  while (pNext(p)!=NULL)
756  {
757  pIter(p);
758  ll++;
759  }
760  }
761  *l=ll;
762  return r->pFDeg(p, r);
763 }

◆ pLDeg0c()

long pLDeg0c ( poly  p,
int *  l,
ring  r 
)

Definition at line 770 of file p_polys.cc.

771 {
772  assume(p!=NULL);
773  p_Test(p,r);
774  p_CheckPolyRing(p, r);
775  long o;
776  int ll=1;
777 
778  if (! rIsSyzIndexRing(r))
779  {
780  while (pNext(p) != NULL)
781  {
782  pIter(p);
783  ll++;
784  }
785  o = r->pFDeg(p, r);
786  }
787  else
788  {
789  long unsigned curr_limit = rGetCurrSyzLimit(r);
790  poly pp = p;
791  while ((p=pNext(p))!=NULL)
792  {
793  if (__p_GetComp(p, r)<=curr_limit/*syzComp*/)
794  ll++;
795  else break;
796  pp = p;
797  }
798  p_Test(pp,r);
799  o = r->pFDeg(pp, r);
800  }
801  *l=ll;
802  return o;
803 }

◆ pLDeg1()

long pLDeg1 ( poly  p,
int *  l,
ring  r 
)

Definition at line 841 of file p_polys.cc.

842 {
843  p_CheckPolyRing(p, r);
844  long unsigned k= p_GetComp(p, r);
845  int ll=1;
846  long t,max;
847 
848  max=r->pFDeg(p, r);
849  if (k > 0)
850  {
851  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
852  {
853  t=r->pFDeg(p, r);
854  if (t>max) max=t;
855  ll++;
856  }
857  }
858  else
859  {
860  while ((p=pNext(p))!=NULL)
861  {
862  t=r->pFDeg(p, r);
863  if (t>max) max=t;
864  ll++;
865  }
866  }
867  *l=ll;
868  return max;
869 }

◆ pLDeg1_Deg()

long pLDeg1_Deg ( poly  p,
int *  l,
ring  r 
)

Definition at line 910 of file p_polys.cc.

911 {
912  assume(r->pFDeg == p_Deg);
913  p_CheckPolyRing(p, r);
914  long unsigned k= p_GetComp(p, r);
915  int ll=1;
916  long t,max;
917 
918  max=p_GetOrder(p, r);
919  if (k > 0)
920  {
921  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
922  {
923  t=p_GetOrder(p, r);
924  if (t>max) max=t;
925  ll++;
926  }
927  }
928  else
929  {
930  while ((p=pNext(p))!=NULL)
931  {
932  t=p_GetOrder(p, r);
933  if (t>max) max=t;
934  ll++;
935  }
936  }
937  *l=ll;
938  return max;
939 }

◆ pLDeg1_Totaldegree()

long pLDeg1_Totaldegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 975 of file p_polys.cc.

976 {
977  p_CheckPolyRing(p, r);
978  long unsigned k= p_GetComp(p, r);
979  int ll=1;
980  long t,max;
981 
982  max=p_Totaldegree(p, r);
983  if (k > 0)
984  {
985  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
986  {
987  t=p_Totaldegree(p, r);
988  if (t>max) max=t;
989  ll++;
990  }
991  }
992  else
993  {
994  while ((p=pNext(p))!=NULL)
995  {
996  t=p_Totaldegree(p, r);
997  if (t>max) max=t;
998  ll++;
999  }
1000  }
1001  *l=ll;
1002  return max;
1003 }

◆ pLDeg1_WFirstTotalDegree()

long pLDeg1_WFirstTotalDegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1038 of file p_polys.cc.

1039 {
1040  p_CheckPolyRing(p, r);
1041  long unsigned k= p_GetComp(p, r);
1042  int ll=1;
1043  long t,max;
1044 
1046  if (k > 0)
1047  {
1048  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
1049  {
1050  t=p_WFirstTotalDegree(p, r);
1051  if (t>max) max=t;
1052  ll++;
1053  }
1054  }
1055  else
1056  {
1057  while ((p=pNext(p))!=NULL)
1058  {
1059  t=p_WFirstTotalDegree(p, r);
1060  if (t>max) max=t;
1061  ll++;
1062  }
1063  }
1064  *l=ll;
1065  return max;
1066 }
long p_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:596

◆ pLDeg1c()

long pLDeg1c ( poly  p,
int *  l,
ring  r 
)

Definition at line 877 of file p_polys.cc.

878 {
879  p_CheckPolyRing(p, r);
880  int ll=1;
881  long t,max;
882 
883  max=r->pFDeg(p, r);
884  if (rIsSyzIndexRing(r))
885  {
886  long unsigned limit = rGetCurrSyzLimit(r);
887  while ((p=pNext(p))!=NULL)
888  {
889  if (__p_GetComp(p, r)<=limit)
890  {
891  if ((t=r->pFDeg(p, r))>max) max=t;
892  ll++;
893  }
894  else break;
895  }
896  }
897  else
898  {
899  while ((p=pNext(p))!=NULL)
900  {
901  if ((t=r->pFDeg(p, r))>max) max=t;
902  ll++;
903  }
904  }
905  *l=ll;
906  return max;
907 }

◆ pLDeg1c_Deg()

long pLDeg1c_Deg ( poly  p,
int *  l,
ring  r 
)

Definition at line 941 of file p_polys.cc.

942 {
943  assume(r->pFDeg == p_Deg);
944  p_CheckPolyRing(p, r);
945  int ll=1;
946  long t,max;
947 
948  max=p_GetOrder(p, r);
949  if (rIsSyzIndexRing(r))
950  {
951  long unsigned limit = rGetCurrSyzLimit(r);
952  while ((p=pNext(p))!=NULL)
953  {
954  if (__p_GetComp(p, r)<=limit)
955  {
956  if ((t=p_GetOrder(p, r))>max) max=t;
957  ll++;
958  }
959  else break;
960  }
961  }
962  else
963  {
964  while ((p=pNext(p))!=NULL)
965  {
966  if ((t=p_GetOrder(p, r))>max) max=t;
967  ll++;
968  }
969  }
970  *l=ll;
971  return max;
972 }

◆ pLDeg1c_Totaldegree()

long pLDeg1c_Totaldegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1005 of file p_polys.cc.

1006 {
1007  p_CheckPolyRing(p, r);
1008  int ll=1;
1009  long t,max;
1010 
1011  max=p_Totaldegree(p, r);
1012  if (rIsSyzIndexRing(r))
1013  {
1014  long unsigned limit = rGetCurrSyzLimit(r);
1015  while ((p=pNext(p))!=NULL)
1016  {
1017  if (__p_GetComp(p, r)<=limit)
1018  {
1019  if ((t=p_Totaldegree(p, r))>max) max=t;
1020  ll++;
1021  }
1022  else break;
1023  }
1024  }
1025  else
1026  {
1027  while ((p=pNext(p))!=NULL)
1028  {
1029  if ((t=p_Totaldegree(p, r))>max) max=t;
1030  ll++;
1031  }
1032  }
1033  *l=ll;
1034  return max;
1035 }

◆ pLDeg1c_WFirstTotalDegree()

long pLDeg1c_WFirstTotalDegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1068 of file p_polys.cc.

1069 {
1070  p_CheckPolyRing(p, r);
1071  int ll=1;
1072  long t,max;
1073 
1075  if (rIsSyzIndexRing(r))
1076  {
1077  long unsigned limit = rGetCurrSyzLimit(r);
1078  while ((p=pNext(p))!=NULL)
1079  {
1080  if (__p_GetComp(p, r)<=limit)
1081  {
1082  if ((t=p_Totaldegree(p, r))>max) max=t;
1083  ll++;
1084  }
1085  else break;
1086  }
1087  }
1088  else
1089  {
1090  while ((p=pNext(p))!=NULL)
1091  {
1092  if ((t=p_Totaldegree(p, r))>max) max=t;
1093  ll++;
1094  }
1095  }
1096  *l=ll;
1097  return max;
1098 }

◆ pLDegb()

long pLDegb ( poly  p,
int *  l,
ring  r 
)

Definition at line 811 of file p_polys.cc.

812 {
813  p_CheckPolyRing(p, r);
814  long unsigned k= p_GetComp(p, r);
815  long o = r->pFDeg(p, r);
816  int ll=1;
817 
818  if (k != 0)
819  {
820  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
821  {
822  ll++;
823  }
824  }
825  else
826  {
827  while ((p=pNext(p)) !=NULL)
828  {
829  ll++;
830  }
831  }
832  *l=ll;
833  return o;
834 }

◆ pLength()

static unsigned pLength ( poly  a)
inlinestatic

Definition at line 191 of file p_polys.h.

192 {
193  unsigned l = 0;
194  while (a!=NULL)
195  {
196  pIter(a);
197  l++;
198  }
199  return l;
200 }

◆ pp_DivideM()

poly pp_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1629 of file p_polys.cc.

1630 {
1631  if (a==NULL) { return NULL; }
1632  // TODO: better implementation without copying a,b
1633  return p_DivideM(p_Copy(a,r),p_Head(b,r),r);
1634 }
poly p_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1574

◆ pp_Jet()

poly pp_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4423 of file p_polys.cc.

4424 {
4425  poly r=NULL;
4426  poly t=NULL;
4427 
4428  while (p!=NULL)
4429  {
4430  if (p_Totaldegree(p,R)<=m)
4431  {
4432  if (r==NULL)
4433  r=p_Head(p,R);
4434  else
4435  if (t==NULL)
4436  {
4437  pNext(r)=p_Head(p,R);
4438  t=pNext(r);
4439  }
4440  else
4441  {
4442  pNext(t)=p_Head(p,R);
4443  pIter(t);
4444  }
4445  }
4446  pIter(p);
4447  }
4448  return r;
4449 }

◆ pp_JetW()

poly pp_JetW ( poly  p,
int  m,
int *  w,
const ring  R 
)

Definition at line 4468 of file p_polys.cc.

4469 {
4470  poly r=NULL;
4471  poly t=NULL;
4472  while (p!=NULL)
4473  {
4474  if (totaldegreeWecart_IV(p,R,w)<=m)
4475  {
4476  if (r==NULL)
4477  r=p_Head(p,R);
4478  else
4479  if (t==NULL)
4480  {
4481  pNext(r)=p_Head(p,R);
4482  t=pNext(r);
4483  }
4484  else
4485  {
4486  pNext(t)=p_Head(p,R);
4487  pIter(t);
4488  }
4489  }
4490  pIter(p);
4491  }
4492  return r;
4493 }

◆ pp_mm_Mult()

static poly pp_mm_Mult ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1041 of file p_polys.h.

1042 {
1043  if (p==NULL) return NULL;
1044  if (p_LmIsConstant(m, r))
1045  return __pp_Mult_nn(p, pGetCoeff(m), r);
1046  else
1047  return r->p_Procs->pp_mm_Mult(p, m, r);
1048 }
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:1002

◆ pp_Mult_Coeff_mm_DivSelect() [1/2]

static poly pp_Mult_Coeff_mm_DivSelect ( poly  p,
const poly  m,
const ring  r 
)
inlinestatic

Definition at line 1090 of file p_polys.h.

1091 {
1092  int shorter;
1093  return r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1094 }

◆ pp_Mult_Coeff_mm_DivSelect() [2/2]

static poly pp_Mult_Coeff_mm_DivSelect ( poly  p,
int &  lp,
const poly  m,
const ring  r 
)
inlinestatic

Definition at line 1098 of file p_polys.h.

1099 {
1100  int shorter;
1101  poly pp = r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1102  lp -= shorter;
1103  return pp;
1104 }

◆ pp_Mult_mm()

static poly pp_Mult_mm ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1031 of file p_polys.h.

1032 {
1033  if (p==NULL) return NULL;
1034  if (p_LmIsConstant(m, r))
1035  return __pp_Mult_nn(p, pGetCoeff(m), r);
1036  else
1037  return r->p_Procs->pp_Mult_mm(p, m, r);
1038 }

◆ pp_Mult_nn()

static poly pp_Mult_nn ( poly  p,
number  n,
const ring  r 
)
inlinestatic

Definition at line 992 of file p_polys.h.

993 {
994  if (p==NULL) return NULL;
995  if (n_IsOne(n, r->cf))
996  return p_Copy(p, r);
997  else if (n_IsZero(n, r->cf))
998  return NULL;
999  else
1000  return r->p_Procs->pp_Mult_nn(p, n, r);
1001 }

◆ pp_Mult_qq()

static poly pp_Mult_qq ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1151 of file p_polys.h.

1152 {
1153  if (p == NULL || q == NULL) return NULL;
1154 
1155  if (pNext(p) == NULL)
1156  {
1157  return r->p_Procs->pp_mm_Mult(q, p, r);
1158  }
1159 
1160  if (pNext(q) == NULL)
1161  {
1162  return r->p_Procs->pp_Mult_mm(p, q, r);
1163  }
1164 
1165  poly qq = q;
1166  if (p == q)
1167  qq = p_Copy(q, r);
1168 
1169  poly res;
1170 #if defined(HAVE_PLURAL) || defined(HAVE_SHIFTBBA)
1171  if (rIsNCRing(r))
1172  res = _nc_pp_Mult_qq(p, qq, r);
1173  else
1174 #endif
1175  res = _p_Mult_q(p, qq, 1, r);
1176 
1177  if (qq != q)
1178  p_Delete(&qq, r);
1179  return res;
1180 }
poly _nc_pp_Mult_qq(const poly p, const poly q, const ring r)
general NC-multiplication without destruction
Definition: old.gring.cc:254

◆ pRestoreDegProcs()

void pRestoreDegProcs ( ring  r,
pFDegProc  old_FDeg,
pLDegProc  old_lDeg 
)

Definition at line 3727 of file p_polys.cc.

3728 {
3729  assume(old_FDeg != NULL && old_lDeg != NULL);
3730  r->pFDeg = old_FDeg;
3731  r->pLDeg = old_lDeg;
3732 }

◆ pReverse()

static poly pReverse ( poly  p)
inlinestatic

Definition at line 335 of file p_polys.h.

336 {
337  if (p == NULL || pNext(p) == NULL) return p;
338 
339  poly q = pNext(p), // == pNext(p)
340  qn;
341  pNext(p) = NULL;
342  do
343  {
344  qn = pNext(q);
345  pNext(q) = p;
346  p = q;
347  q = qn;
348  }
349  while (qn != NULL);
350  return p;
351 }

◆ pSetDegProcs()

void pSetDegProcs ( ring  r,
pFDegProc  new_FDeg,
pLDegProc  new_lDeg = NULL 
)

Definition at line 3715 of file p_polys.cc.

3716 {
3717  assume(new_FDeg != NULL);
3718  r->pFDeg = new_FDeg;
3719 
3720  if (new_lDeg == NULL)
3721  new_lDeg = r->pLDegOrig;
3722 
3723  r->pLDeg = new_lDeg;
3724 }