Actual source code: test5.c
slepc-3.17.0 2022-03-31
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test PEP view and monitor functionality.\n\n";
13: #include <slepcpep.h>
15: int main(int argc,char **argv)
16: {
17: Mat A[3];
18: PEP pep;
19: Vec xr,xi;
20: PetscScalar kr,ki;
21: PetscComplex *eigs,eval;
22: PetscInt n=6,Istart,Iend,i,nconv,its;
23: PetscReal errest;
24: PetscBool checkfile;
25: char filename[PETSC_MAX_PATH_LEN];
26: PetscViewer viewer;
28: SlepcInitialize(&argc,&argv,(char*)0,help);
29: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
30: PetscPrintf(PETSC_COMM_WORLD,"\nPEP of diagonal problem, n=%" PetscInt_FMT "\n\n",n);
32: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
33: Generate the matrices
34: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
35: MatCreate(PETSC_COMM_WORLD,&A[0]);
36: MatSetSizes(A[0],PETSC_DECIDE,PETSC_DECIDE,n,n);
37: MatSetFromOptions(A[0]);
38: MatSetUp(A[0]);
39: MatGetOwnershipRange(A[0],&Istart,&Iend);
40: for (i=Istart;i<Iend;i++) MatSetValue(A[0],i,i,i+1,INSERT_VALUES);
41: MatAssemblyBegin(A[0],MAT_FINAL_ASSEMBLY);
42: MatAssemblyEnd(A[0],MAT_FINAL_ASSEMBLY);
44: MatCreate(PETSC_COMM_WORLD,&A[1]);
45: MatSetSizes(A[1],PETSC_DECIDE,PETSC_DECIDE,n,n);
46: MatSetFromOptions(A[1]);
47: MatSetUp(A[1]);
48: for (i=Istart;i<Iend;i++) MatSetValue(A[1],i,i,-1.5,INSERT_VALUES);
49: MatAssemblyBegin(A[1],MAT_FINAL_ASSEMBLY);
50: MatAssemblyEnd(A[1],MAT_FINAL_ASSEMBLY);
52: MatCreate(PETSC_COMM_WORLD,&A[2]);
53: MatSetSizes(A[2],PETSC_DECIDE,PETSC_DECIDE,n,n);
54: MatSetFromOptions(A[2]);
55: MatSetUp(A[2]);
56: for (i=Istart;i<Iend;i++) MatSetValue(A[2],i,i,-1.0/(i+1),INSERT_VALUES);
57: MatAssemblyBegin(A[2],MAT_FINAL_ASSEMBLY);
58: MatAssemblyEnd(A[2],MAT_FINAL_ASSEMBLY);
60: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
61: Create the PEP solver
62: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
63: PEPCreate(PETSC_COMM_WORLD,&pep);
64: PetscObjectSetName((PetscObject)pep,"pep");
65: PEPSetOperators(pep,3,A);
66: PEPSetFromOptions(pep);
68: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
69: Solve the eigensystem and display solution
70: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
71: PEPSolve(pep);
72: PEPGetConverged(pep,&nconv);
73: PEPGetIterationNumber(pep,&its);
74: PetscPrintf(PETSC_COMM_WORLD," %" PetscInt_FMT " converged eigenpairs after %" PetscInt_FMT " iterations\n",nconv,its);
75: if (nconv>0) {
76: MatCreateVecs(A[0],&xr,&xi);
77: PEPGetEigenpair(pep,0,&kr,&ki,xr,xi);
78: VecDestroy(&xr);
79: VecDestroy(&xi);
80: PEPGetErrorEstimate(pep,0,&errest);
81: }
82: PEPErrorView(pep,PEP_ERROR_RELATIVE,NULL);
84: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
85: Check file containing the eigenvalues
86: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
87: PetscOptionsGetString(NULL,NULL,"-checkfile",filename,sizeof(filename),&checkfile);
88: if (checkfile) {
89: PetscMalloc1(nconv,&eigs);
90: PetscViewerBinaryOpen(PETSC_COMM_WORLD,filename,FILE_MODE_READ,&viewer);
91: PetscViewerBinaryRead(viewer,eigs,nconv,NULL,PETSC_COMPLEX);
92: PetscViewerDestroy(&viewer);
93: for (i=0;i<nconv;i++) {
94: PEPGetEigenpair(pep,i,&kr,&ki,NULL,NULL);
95: #if defined(PETSC_USE_COMPLEX)
96: eval = kr;
97: #else
98: eval = PetscCMPLX(kr,ki);
99: #endif
101: }
102: PetscFree(eigs);
103: }
105: PEPDestroy(&pep);
106: MatDestroy(&A[0]);
107: MatDestroy(&A[1]);
108: MatDestroy(&A[2]);
109: SlepcFinalize();
110: return 0;
111: }
113: /*TEST
115: test:
116: suffix: 1
117: args: -pep_error_backward ::ascii_info_detail -pep_largest_real -pep_view_values -pep_monitor_conv -pep_error_absolute ::ascii_matlab -pep_monitor_all -pep_converged_reason -pep_view
118: requires: !single
119: filter: grep -v "tolerance" | grep -v "problem type" | sed -e "s/[+-]0\.0*i//g" -e "s/\([0-9]\.[5]*\)[+-][0-9]\.[0-9]*e-[0-9]*i/\\1/g" -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g"
121: test:
122: suffix: 2
123: args: -n 12 -pep_largest_real -pep_monitor -pep_view_values ::ascii_matlab
124: requires: double
125: filter: sed -e "s/[+-][0-9]\.[0-9]*e-[0-9]*i//" -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g" -e "s/5\.\([49]\)999999[0-9]*e+00/5.\\1999999999999999e+00/"
127: test:
128: suffix: 3
129: args: -pep_nev 4 -pep_view_values binary:myvalues.bin -checkfile myvalues.bin
130: requires: double
132: test:
133: suffix: 4
134: args: -pep_nev 4 -pep_ncv 10 -pep_refine -pep_conv_norm -pep_extract none -pep_scale scalar -pep_view -pep_monitor -pep_error_relative ::ascii_info_detail
135: requires: double !complex
136: filter: grep -v "tolerance" | sed -e "s/[0-9]\.[0-9]*e-\([0-9]*\)/removed/g"
138: test:
139: suffix: 5
140: args: -n 12 -pep_largest_real -pep_monitor draw::draw_lg -pep_monitor_all draw::draw_lg -pep_view_values draw -draw_save myeigen.ppm -draw_virtual
141: requires: double
143: TEST*/