FreeBSD Porter 3

A

HO

1. 8%
2. BUE
3.¥1i&

¥7H Port
Port BR FFiE

3.1. w0 Makefile
3.2. #E00RAD
3.3. 0% checksum O

3.4. HIE Port

3.5. I portlint Z&4FAR0 Port
3.6. IR3FHY Port
4. Slow Porting
4.1. How Things Work
4.2. BUSERIAHS
4.3. Modifying the Port
4.4. Patching

4.5.

Ean—1

X rE

4.6. RRIB(EREEA
5. Configuring the Makefile

5.1. The Original Source

5.2. Naming

5.3.

Categorization

5.4. The Distribution Files
5.5. MAINTAINER

3.6.

COMMENT

5.7. Licenses

5.8.

PORTSCOUT

5.9. Dependencies

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

. Slave Ports and MASTERDIR
. Man Pages

. Info Files

. Makefile Options

. Specifying the Working Directory

. Conflict Handling
. Installing Files

. Use BINARY_ALIAS to Rename Commands Instead of Patching the Build

6. Special Considerations

6.1. Staging
6.2. Bundled Libraries
6.3. Shared Libraries

10
10
11
12
13
13
13
15
15
16
17
17
21
21
22
22
22
32
40
68
69
69
81
81
88
89
89
90
110
111
113
116
118
118
119
120

6.4. Ports with Distribution Restrictions or Legal Concerns 121

6.5. Building Mechanisms 123
6.6. Using GNU Autotools 139
6.7. Using GNU gettext 140
6.8. Using Perl 141
6.9. Using X11 144
6.10. Using GNOME 146
6.11. GNOME Components 148
6.12. Using Qt 153
6.13. Using KDE 158
6.14. Using LXQt 165
6.15. Using Java 166
6.16. Web Applications, Apache and PHP 169
6.17. Using Python 172
6.18. Using Tcl/Tk 175
6.19. Using Ruby 175
6.20. Using SDL 176
6.21. Using wxWidgets 177
6.22. Using Lua 181
6.23. Using iconv 185
6.24. Using Xfce 187
6.25. Using Databases 189
6.26. Starting and Stopping Services (rc Scripts) 190
6.27. Adding Users and Groups 193
6.28. Ports That Rely on Kernel Sources 193
6.29. Go Libraries 194
6.30. Haskell Libraries 194
6.31. Shell Completion Files 194
7. Flavors 195
7.1. An Introduction to Flavors 195
7.2. Using FLAVORS 195
7.3. USES=php and Flavors 198
7.4. USES=python and Flavors 199
7.5. USES=1ua and Flavors 201
8. Advanced pkg-plist Practices 202
8.1. Changing pkg-plist Based on Make Variables 202
8.2. Empty Directories 203
8.3. Configuration Files 204
8.4. Dynamic Versus Static Package List 204
8.5. Automated Package List Creation 205
8.6. Expanding Package List with Keywords 207

9. pkg-* 216

9.1. pkg-message 216
9.2. pkg-install 219
9.3. pkg-deinstall 219
9.4. Changing the Names of pkg-* 219
9.5. Making Use of SUB_FILES and SUB_LIST 220
10. Testing the Port 221
10.1. Running make describe 221
10.2. Portclippy / Portfmt 221
10.3. Portlint 221
10.4. Port Tools 221
10.5. PREFIX and DESTDIR 222
10.6. Poudriere 223
11. Upgrading a Port 232
11.1. Using Git to Make Patches 233
11.2. UPDATING and MOVED 235
12. Security 237
12.1. Why Security is So Important 237
12.2. Fixing Security Vulnerabilities 237
12.3. Keeping the Community Informed 238
13. Dos and Don’ts 243
13.1. Introduction 243
13.2. WRKDIR 243
13.3. WRKDIRPREFIX 243
13.4. Differentiating Operating Systems and OS Versions 243
13.5. Writing Something After bsd.port.mk 244
13.6. Use the exec Statement in Wrapper Scripts 245
13.7. Do Things Rationally 245
13.8. Respect Both CC and CXX 245
13.9. Respect CFLAGS 246
13.10. Verbose Build Logs 246
13.11. Feedback 247
13.12. README.html 247
13.13. Marking a Port Not Installable with BROKEN, FORBIDDEN, or IGNORE 247
13.14. Architectural Considerations 249
13.15. Marking a Port for Removal with DEPRECATED or EXPIRATION_DATE 250
13.16. Avoid Use of the .error Construct 250
13.17. Usage of sysctl 251
13.18. Rerolling Distfiles 251
13.19. Use POSIX Standards 251

13.20. Miscellanea 252

14. A Sample Makefile 253

15. Order of Variables in Port Makefiles. 255
15.1. PORTNAME BLOCKo 255
15.2. PATCHFILES BIOCKo 256
15.3. MAINTAINER BIOCKo oo 256
15.4. LICENSE BIOCKo e 256
15.5. Generic BROKEN/IGNORE/DEPRECATED MeSSAZES. oo oottt 256
15.6. The Dependencies BIOCK. 257
15.7. FLAVOTS . . . oo 257
15.8. USES and USE_Xo 257
15.9. Standard bsd.port.mk Variables. 258
15.10. Options and Helpers 258
15.11. The Rest of the Variables 259
15.12. The Targets 259

16. Keeping U . ..o 260
16.1. FreshPOrts 260
16.2. The Web Interface to the Source Repository............ 260
16.3. The FreeBSD Ports Mailing List 260
16.4. The FreeBSD Port Building Cluster 260
16.5. Portscout: the FreeBSD Ports Distfile Scanner 261
16.6. The FreeBSD Ports Monitoring System i 261

17.0SING USES MACTOS . . - ..ot 262
17.1. An Introduction to USES. 262
17.2. 77 262
17.3.8da .« oo 263
174, utorecont. © oo 263
17.5. bLaslapack. oo 263
17.6. bdb i 263
177, DISON 264
17.8. cabal . 264
17.9. Cargo ..o 265
17.00. charsetfix .o 265
1700, cmake .o 265
7 5 10 < 266
1708 P oo 266
1704, Cran oo 267
17.15. desktop-file-utils. ... oo 267
17.16. desthack 267
1707, dTISPlay ..o 267
17.08. dOS2UNTX oot 267
17.09. drupal .« oo 268

1720, G0N 268

17,20, fakeroot ... 268
0 | 268
17,23, Firebird oo 268
17,24, fONts e 268
17 2S. fortran e 269
17.26. TUSE 269
17,27, gem e 269
17,28, gettext .. 269
17.29. gettext-runtime. ... 269
17.30. gettext-tools. ... o 269
17.31. ghostsCript « . 269
17,32, G o 270
17,33, gmake ..o 270
17.34. gOMe .« . oo 270
17,35, G0 o 273
17,36, gpert e 274
17.37. grantlee ... 274
17,38, groff 274
17.39. GSSaPT « o oot 274
17.40. horde ..o 275
1740 TCONV © o 276
17.42. TMaKe o 276
17.43. Kde o 276
17.44.KMOd . oo 276
2 TR 1 T 277
17.46. 11barchive ... 277
17.47. Libedit o 277
17.48. 11bt00 . oo 277
T17.49. LUNUX © oo 277
17.50. 10Calbase 279
17.50. LU « o 280
17,52, IXQE 280
17.53. makeTnTO ..o 280
17.54. makese Lt oo 280
17,55 mate e 280
T17.56. MESON . oo 281
17 57 MetapOrt o 281
17,58, MYSQL .« 281
T17.59. M0N0 . . oo 282
17.60. MOt T © 282

17.61. ncurses 282

17,62, MINJA © o 282
17.63. 0D C 282
17,64, 0peNal .o 282
17.65. pathfix o 283
1766, PEAT o 283
17,67, POl 283
17.68. PaSqL . o 283
17.69. PR 284
17.70. pkgeONTiIg - oo 286
LT PUT 286
172, Pyt 286
17,73, PYENON 287
1774, QMATL . 288
17,75, QMake o 288
1776, Qo 288
17,77, QE-dist o 288
17.78. 1€adLTNE oo 289
17.79. saMba . .o 289
17.80. SCONS oo 289
17.81. shared-mime-info. o 289
17.82. shebangfix ... 290
17.83. sqLite .o 292
17,84, Sl o 292
87 TA - T 293
1786, Ol o 293
1787, terminto - oo 294
17,88, Tk o 294
17.89. UTdfaX o 294
17.90. uniquefiles ... o 294
17,90, varnish o 294
17.92. WebpLUGTIN oo 294
17,98, XT 00 295
T17.94. XOTQ o 295
17.95. X0Org-Cat . ..o 297
17.96. Zip .« 297
18, FreeBSD version Values 298
18.1. FreeBSD 14 VerSiONS 298
18.2. FreeBSD 13 VeIrSIONSo 302
18.3. FreeBSD 12 VerSIONS 319
18.4. FreeBSD 11 VerSIONS 335

18.5. FreeBSD 10 Versions

18.6. FreeBSD 9 Versions

18.7. FreeBSD 8 Versions

18.8. FreeBSD 7 Versions

18.9. FreeBSD 6 Versions

18.10. FreeBSD 5 Versions

18.11. FreeBSD 4 Versions

18.12. FreeBSD 3 Versions

18.13. FreeBSD 2.2 Versions

18.14. FreeBSD 2 Before 2.2-RELEASE Versions

354
368
377
393
402
408
420
425
426
427

Chapter 1. #2F

& FreeBSD EFHEZBZEEE FreeBSD Ports Collection ZREZ AR ("ports"), & FreeBSD
NEMEBD—IR, EL ports MEERBHFSETINBINE, FAILELESINGR, BEOERBED.

£ FreeBSD LHE, MEAZAILURZFAT port, DRI port WOHEAMEEREE, AILBEMREHEE —
ISR AR E(EM commit FIRERR, BBILIRMUEHSRE.

Chapter 2. 2{EHHJ Port

REMAEI S EFTRY port SNEFTIRA port B—LEHEHR 70 2 X470 !

TEGMIE—LEY port FERIENEIE, IRSEAMITER port , AOHFEZ0 Upgrading a Port
OBA.

RAEIAAIEEBBAR O, PIEEEELZZE /usr/ports/Mk/bsd.portmk EIZFFE port
Makefile OEZHERIN, MBOIRROXAD hacking Makefile, LRI HIESEZEIRIH.
o, BEEEMREE port FIRERE, WEILIEI FreeBSD ports mailing list 2REBEZR,

AXIFMERARIBEEE (VARERD, RE—LLo/LIER(overridden), AXESIRRIEEE
GESER)EEEZOE /usr/ports/MK/bsd.port.mk 0, HtHEERSZ, FI= B X

o OMZFEER—MRY tab E%ED, MEKA 1 @ tab FMN 4 {@ space, Emacs Ed Vim
FEZIBIEH A ZISIBEBEIMEIRED, vi(l) & ex(1) EMERINTEBTLUT :set
tabstop=4 LUERELED,

MEBERRIR EF0? B E5KIFENHY ports JEE 00, BEREBAIAIMUILITH,

../upgrading/index.html#port-upgrading
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
https://www.freebsd.org/cgi/man.cgi?query=vi&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ex&sektion=1&format=html
http://wiki.freebsd.org/WantedPorts
http://wiki.freebsd.org/WantedPorts
http://wiki.freebsd.org/WantedPorts

Chapter 3. +]i& Port |RE _EFi=

AEEEMBAUTAIRETTIE port, RMBFREARISRERTTENEARE, TER "ISRITIE Port" IR
Slow Porting iR,

BEBSEAREINNRIGEVREMEI(tarball), IEEBRE DISTDIR, FREXBEREHESZZ
/usr/ports/distfiles.
o S EIBMRERIRE I U EERE. UMEAREEAEMAIUERER FreeBSD
F#iT. IRFEEWR, FERSlow Porting,

It is recommended to set the DEVELOPER make(1) variable in /etc/make.conf before
getting into porting.

o # echo DEVELOPER=yes >> /etc/make.conf

This setting enables the "developer mode" that displays deprecation warnings and
activates some further quality checks on calling make.

3.1. #w0 Makefile

BRS8N Makefile X255 :

$FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29
01:37:53Z kevlo $

PORTNAME= oneko

PORTVERSION= 1.1b

CATEGORIES= games

MASTER_SITES= ftp://ftp.cs.columbia.edu/archives/X11R5/contrib/

MAINTAINER= youremail@example.com
COMMENT= Cat chasing a mouse all over the screen

.include <bsd.port.mk>

In some cases, the Makefile of an existing port may contain additional lines in the
header, such as the name of the port and the date it was created. This additional
information has been declared obsolete, and is being phased out.

0, RBEEEk BEICSKE\EEKEZ2LT0? FBE $FreeBSD: head/zh_TW.UTF-8/books/porters-
handbook/book.xml 48496 2016-03-29 ©1:37:537 kevlo $ E—1THIZE, BIEARZ , B port ETVEA

port tree [, Subversion MEEEBHRAEIFE], BLSRRIMEIED, FIAZ0 sample Makefile
E=1:0]8

10

../slow-porting/index.html#slow-porting
../slow-porting/index.html#slow-porting
https://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html

3.2. HEOOEAD

EERESTIEBEMIME package, BMIEIIZRZEM port BHEEEREN, EMIELINHIE pkg-descr &
pkg-plist , fF0RFIEES pkg- LEREMMOZRMER,

3.2.1. pkg-descr

IEf2I port RUFHADEAD, A —EREEESIF2R0BAZ port KI/EA

IR, S0.03F_ XEEEN0RFM X2 [ARE. HHAX port AIOER] !
BRI EEEN

0 BRI,

README g, manpage

FIE, MR EA2EREN port

ERHERTALES, FIE0, manpageZ¥EZEH, ERmonospaceFEIREZ A

RO,

A well-written pkg-descr describes the port completely enough that users would not have to consult
the documentation or visit the website to understand what the software does, how it can be useful,
or what particularly nice features it has. Mentioning certain requirements like a graphical toolkit,
heavy dependencies, runtime environment, or implementation languages help users decide
whether this port will work for them.

Include a URL to the official WWW homepage. Prepend one of the websites (pick the most common
one) with Www: (followed by single space) so that automated tools will work correctly. If the URI is
the root of the website or directory, it must be terminated with a slash.

o If the listed webpage for a port is not available, try to search the Internet first to
see if the official site moved, was renamed, or is hosted elsewhere.

12 pkg-descr IBAHIFIF

This is a port of oneko, in which a cat chases a poor mouse all over

the screen.
(etc.)

WWW: http://www.oneko.o

3.2.2. pkg-plist

BR% port FAEEEMIFFAD

rg/

oo
;%/EEI

OAR%A package EHEBERIE, EIGE#HKOIA [Mpacking list

FI1EEE)"] . BREEHNEZIMN prefix GBE 2 /usr/local),

EE—EBERHF

11

bin/oneko
man/man1/oneko.1.gz
1ib/X11/app-defaults/Oneko
1ib/X11/0oneko/cat1.xpm
1ib/X11/0neko/cat2.xpm
1ib/X11/0oneko/mouse.xpm

OmR packing list 3@, BILAEFD pkg-create(8) manual page o

o HRBEINDG, KBRFEIEFIEHRE, BOTRBAMRE, SHEERE. HEREHE

sz oo
0

BB,

@ FEIESIEEBEAE T, LHEZ port BER—KMEIRMIEE,
- packing list ELEEERATI0,

A B#EnE

DEHE—EER T A pkg-plist 0 FHZEM port BEEH, RIER—LEIR, BRITLIAE Makefile
O2RA PLIST_FILES ZREX{X, b, AILATE_ERAY oneko port OARAKY_E pkg-plist , MRETE Makefile

ODNA 51T

PLIST FILES= bin/oneko \
man/man1/oneko.1.g9z \
1ib/X11/app-defaults/Oneko \
1ib/X11/oneko/cat1.xpm \
1ib/X11/0neko/cat2.xpm \
1ib/X11/0oneko/mouse.xpm

@,

R, FEAEESESE port MORFMBIEAENHARE !
Package List with Keywords #EmimIDE=,
HEE. A, EREBE—EFE @ AILUEA ports collection RIEEBSOZARSEN,

Usage of PLIST_FILES should not be abused. When looking for the origin of a file,
people usually try to grep through the pkg-plist files in the ports tree. Listing files
in PLIST_FILES in the Makefile makes that search more difficult.

If a port needs to create an empty directory, or creates directories outside of
${PREFIX} during installation, refer to Cleaning Up Empty Directories for more
information.

ARBEfERA pkg-create(8) F Expanding
Atb, SBEEANRBEER port , LUKRE{EE% port
i, EEREEER

pkg-plist 2@, FILCRESESRSRES.

BESMEZINAER pke-plist. PLIST_FILES ;SR IR RFES £ 51055,

3.3. 04 checksum [0

D%+ make makesum FAF T, ETRIMEESHDEEEFER distinfo0T0,

12

https://www.freebsd.org/cgi/man.cgi?query=pkg-create&sektion=8&format=html
../plist/index.html#plist-dir-cleaning
https://www.freebsd.org/cgi/man.cgi?query=pkg-create&sektion=8&format=html
../plist/index.html#plist-keywords
../plist/index.html#plist-keywords
../plist/index.html#plist
../plist/index.html#plist
../plist/index.html#plist

3.4. HIZ Port
BTHR, WRERESENE port HOBERRARE, DIEFTEEX port % package,
T EAEREEINEEM

» &% port DFMIERPE, REFITE pkg-plist Do

« H% port BRMER, BFBUSIE pkg-plist U,

* The port can be installed using the install target. This verifies that the install script works
correctly.

* The port can be deinstalled properly using the deinstall target. This verifies that the deinstall
script works correctly.

* The port does not access network resources after the fetch target. This is important for package
builders, such as ports-mgmt/poudriere.

* Make sure that make package can be run as a normal user (that is, not as root). If that fails,
NEED_ROOT=yes must be added to the port Makefile.
Procedure: ZEZAHIEIER

1. make stage
. make check-orphans

. make package

. make deinstall

2
3
4. make install
5
6. pkg add package-filename
7

. make package (as user)

SRR REREIEEAES LR,

Thorough automated testing can be done with ports-mgmt/tinderbox or ports-mgmt/poudriere
from the Ports Collection. These applications maintain jails where all of the steps shown above can
be tested without affecting the state of the host system.

3.5. LA portlint ZR{/Ei&0 Port

/A portlint 4RO port REBEBEMAVRAI, ports-mgmt/portlint 2 ports collection
HEP—EEG, BIEOARIEE Makefile IAEE ERELU package EBHE EEMR.

3.6. IE3FHY Port

12ZZFH Port B, 35038 DOs and DON’Ts Z£,

RERSEENRITIEY port RO, H—RITEMIMSIEEIENNE FreeBSD ports tree 0, FHEZE
MEAZERED ZERERE porte HEATFE work HBHIFZEDREK pkgnametgz M package

13

https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/tinderbox/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/portlint/pkg-descr

, A EMIBR A,

Next, build the shar(1) file. Assuming the port is called oneko, cd to the directory above where the
oneko directory is located, and then type: shar find oneko > oneko.shar

To submit oneko.shar, use the bug submit form (category Ports Tree). Add a short description of the
program to the Description field of the PR (perhaps a short version of COMMENT), and do not forget to
add oneko.shar as an attachment.

Giving a good description in the summary of the problem report makes the work

o of port committers a lot easier. We prefer something like "New port: category
/portname__short description of the port" for new ports. Using this scheme makes it
easier and faster to begin the work of committing the new port.

FEREEE—Bh © AN EIREA source B distfile , BELRE work BU. R, AWK _E make package B
04 ® package, ¥1# port 35 shar(1) , AEA diff(1) .

A port %, BWOFERES., BRIZVGEFEFEAKBRIEERRRE, BT FreeBSD ports tree
FIERHIR, F&FHPH port PR SEEETILIE http://www.FreeBSD.org/cgi/query-pr-summary.cgi?
category=ports 00,

HEEBFN port 2%, MRFTEMEE, BMTOBI, REZISTIRERE port tree , INKBEZHKIIE
Additional FreeBSD Contributors 3%k £, MUREMIZRA,

14

https://www.freebsd.org/cgi/man.cgi?query=shar&sektion=1&format=html
https://bugs.freebsd.org/submit/
https://www.freebsd.org/cgi/man.cgi?query=shar&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
http://www.FreeBSD.org/cgi/query-pr-summary.cgi?category=ports
http://www.FreeBSD.org/cgi/query-pr-summary.cgi?category=ports
https://docs.freebsd.org/en/articles/contributors/#contrib-additional

Chapter 4. Slow Porting

Ok..BBE LW AKTAEEIREE, port FHHEHAUEREIFEENRTELEEFER, I, REHG—0—
OARTTHEZNAHE R £ —ERIRAEEER.

4.1. How Things Work

First, this is the sequence of events which occurs when the user first types make in the port’s
directory. Having bsd.port.mk in another window while reading this really helps to understand it.

BIKIELD, FREZAZBEMNT R bsd.port.mk M. :-)

1. The fetch target is run. The fetch target is responsible for making sure that the tarball
exists locally in DISTDIR. If fetch cannot find the required files in DISTDIR it will look up the
URL MASTER_SITES, which is set in the Makefile, as well as our FTP mirrors where we put
distfiles as backup. It will then attempt to fetch the named distribution file with FETCH,
assuming that the requesting site has direct access to the Internet. If that succeeds, it will
save the file in DISTDIR for future use and proceed.

2. The extract target is run. It looks for the port’s distribution file (typically a compressed
tarball) in DISTDIR and unpacks it into a temporary subdirectory specified by WRKDIR
(defaults to work).

3. The patch target is run. First, any patches defined in PATCHFILES are applied. Second, if any
patch files named patch-* are found in PATCHDIR (defaults to the files subdirectory), they are
applied at this time in alphabetical order.

4. The configure target is run. This can do any one of many different things.
a. If it exists, scripts/configure is run.
b. If HAS_CONFIGURE or GNU_CONFIGURE is set, WRKSRC/configure is run.

5. The build target is run. This is responsible for descending into the port’s private working
directory (WRKSRC) and building it.

6. The stage target is run. This puts the final set of built files into a temporary directory
(STAGEDIR, see Staging). The hierarchy of this directory mirrors that of the system on which
the package will be installed.

7. The package target is run. This creates a package using the files from the temporary
directory created during the stage target and the port’s pkg-plist.

8. The install target is run. This installs the package created during the package target into
the host system.

The above are the default actions. In addition, define targets pre-something or post-something, or put
scripts with those names, in the scripts subdirectory, and they will be run before or after the default
actions are done.

For example, if there is a post-extract target defined in the Makefile, and a file pre-build in the
scripts subdirectory, the post-extract target will be called after the regular extraction actions, and

15

../special/index.html#staging

pre-build will be executed before the default build rules are done. It is recommended to use
Makefile targets if the actions are simple enough, because it will be easier for someone to figure out
what kind of non-default action the port requires.

The default actions are done by the do-something targets from bsd.port.mk. For example, the
commands to extract a port are in the target do-extract. If the default target does not do the job
right, redefine the do-something target in the Makefile.

The "main" targets (for example, extract, configure, etc.) do nothing more than
make sure all the stages up to that one are completed and call the real targets or

o scripts, and they are not intended to be changed. To fix the extraction, fix do-
extract, but never ever change the way extract operates! Additionally, the target
post-deinstall is invalid and is not run by the ports infrastructure.

Now that what goes on when the user types make install is better understood, let us go through the
recommended steps to create the perfect port.

4.2. BYSIRIGHS

Get the original sources (normally) as a compressed tarball (foo.tar.gz or foo.tar.bz2) and copy it
into DISTDIR. Always use mainstream sources when and where possible.

Set the variable MASTER_SITES to reflect where the original tarball resides. Shorthand definitions
exist for most mainstream sites in bsd.sites.mk. Please use these sites-and the associated
definitions-if at all possible, to help avoid the problem of having the same information repeated
over again many times in the source base. As these sites tend to change over time, this becomes a
maintenance nightmare for everyone involved. See MASTER_SITES for details.

If there is no FTP/HTTP site that is well-connected to the net, or can only find sites that have
irritatingly non-standard formats, put a copy on a reliable FTP or HTTP server (for example, a home

page).

If a convenient and reliable place to put the distfile cannot be found, we can "house" it ourselves on
ftp.FreeBSD.org; however, this is the least-preferred solution. The distfile must be placed into
~/public_distfiles/ of someone’s freefall account. Ask the person who commits the port to do this.
This person will also set MASTER_SITES to LOCAL/username where username is their FreeBSD cluster
login.

If the port’s distfile changes all the time without any kind of version update by the author, consider
putting the distfile on a home page and listing it as the first MASTER_SITES. Try to talk the port author
out of doing this; it really does help to establish some kind of source code control. Hosting a specific
version will prevent users from getting checksum mismatch errors, and also reduce the workload of
maintainers of our FTP site. Also, if there is only one master site for the port, it is recommended to
house a backup on a home page and list it as the second MASTER_SITES.

If the port requires additional patches that are available on the Internet, fetch them too and put
them in DISTDIR. Do not worry if they come from a site other than where the main source tarball
comes, we have a way to handle these situations (see the description of PATCHFILES below).

16

../makefiles/index.html#makefile-master_sites
../makefiles/index.html#porting-patchfiles

4.3. Modifying the Port

Unpack a copy of the tarball in a private directory and make whatever changes are necessary to get
the port to compile properly under the current version of FreeBSD. Keep careful track of steps, as
they will be needed to automate the process shortly. Everything, including the deletion, addition, or
modification of files has to be doable using an automated script or patch file when the port is
finished.

If the port requires significant user interaction/customization to compile or install, take a look at
one of Larry Wall’s classic Configure scripts and perhaps do something similar. The goal of the new
ports collection is to make each port as "plug-and-play" as possible for the end-user while using a
minimum of disk space.

Unless explicitly stated, patch files, scripts, and other files created and contributed
to the FreeBSD ports collection are assumed to be covered by the standard BSD
copyright conditions.

4.4. Patching

In the preparation of the port, files that have been added or changed can be recorded with diff(1)
for later feeding to patch(1). Doing this with a typical file involves saving a copy of the original file
before making any changes using a .orig suffix.

% cp file file.orig

After all changes have been made, cd back to the port directory. Use make makepatch to generate
updated patch files in the files directory.

Use BINARY_ALIAS to substitute hardcoded commands during the build and avoid
(;) patching build files. See Use BINARY_ALIAS to Rename Commands Instead of
et Patching the Build for more information.

4.4.1. General Rules for Patching

Patch files are stored in PATCHDIR, usually files/, from where they will be automatically applied. All
patches must be relative to WRKSRC. Typically WRKSRC is a subdirectory of WRKDIR, the directory where
the distfile is extracted. Use make -V WRKSRC to see the actual path. The patch names are to follow
these rules:

* Avoid having more than one patch modify the same file. For example, having both patch-
foobar.c and patch-foobar.c2 making changes to ${WRKSRC}/foobar.c makes them fragile and
difficult to debug.

* When creating names for patch files, replace each underscore (_) with two underscores (__) and
each slash (/) with one underscore (_). For example, to patch a file named src/freeglut_joystick.c,
name the corresponding patch patch-src_freeglut__joystick.c. Do not name patches like patch-aa
or patch-ab. Always use the path and file name in patch names. Using make makepatch

17

https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=patch&sektion=1&format=html
../makefiles/index.html#binary-alias
../makefiles/index.html#binary-alias

automatically generates the correct names.

* A patch may modify multiple files if the changes are related and the patch is named
appropriately. For example, patch-add-missing-stdlib.h.

* Only use characters [-+._a-zA-70-9] for naming patches. In particular, do not use :: as a path
separator, use _ instead.

Minimize the amount of non-functional whitespace changes in patches. It is common in the Open
Source world for projects to share large amounts of a code base, but obey different style and
indenting rules. When taking a working piece of functionality from one project to fix similar areas
in another, please be careful: the resulting patch may be full of non-functional changes. It not only
increases the size of the ports repository but makes it hard to find out what exactly caused the
problem and what was changed at all.

If a file must be deleted, do it in the post-extract target rather than as part of the patch.

4.4.2. Manual Patch Generation

Manual patch creation is usually not necessary. Automatic patch generation as
described earlier in this section is the preferred method. However, manual
patching may be required occasionally.

Patches are saved into files named patch-* where * indicates the pathname of the file that is
patched, such as patch-Imakefile or patch-src-config.h.

After the file has been modified, diff(1) is used to record the differences between the original and
the modified version. -u causes diff(1) to produce "unified" diffs, the preferred form.

% diff -u file.orig file > patch-pathname-file

When generating patches for new, added files, -N is used to tell diff(1) to treat the non-existent
original file as if it existed but was empty:

% diff -u -N newfile.orig newfile > patch-pathname-newfile

Do not add $FreeBSD$ RCS strings in patches. When patches are added to the Subversion repository
with svn add, the fbsd:nokeywords property is set to yes automatically so keywords in the patch are
not modified when committed. The property can be added manually with svn propset
fbsd:nokeywords yes files: .

Using the recurse (-r) option to diff(1) to generate patches is fine, but please look at the resulting
patches to make sure there is no unnecessary junk in there. In particular, diffs between two backup
files, Makefiles when the port uses Imake or GNU confiqgure, etc., are unnecessary and have to be
deleted. If it was necessary to edit configure.in and run autoconf to regenerate configure, do not
take the diffs of configure (it often grows to a few thousand lines!). Instead, define USES=autoreconf
and take the diffs of configure.in.

18

https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html

4.4.3. Simple Automatic Replacements

Simple replacements can be performed directly from the port Makefile using the in-place mode of
sed(1). This is useful when changes use the value of a variable:

post-patch:
@${REINPLACE_CMD} -e 's|/usr/local|${PREFIX}|g' ${WRKSRC}/Makefile

o Only use sed(1) to replace variable content. You must use patch files instead of
sed(1) to replace static content.

Quite often, software being ported uses the CR/LF convention in source files. This may cause
problems with further patching, compiler warnings, or script execution (like /bin/sh™M not found.)
To quickly convert all files from CR/LF to just LF, add this entry to the port Makefile:

USES= dos2unix
A list of specific files to convert can be given:

USES= dos2unix
DOS2UNIX FILES= util.c util.h

Use DOS2UNIX_REGEX to convert a group of files across subdirectories. Its argument is a find(1)
-compatible regular expression. More on the format is in re_format(7). This option is useful for
converting all files of a given extension. For example, convert all source code files, leaving binary
files intact:

USES= dos2unix
DOS2UNIX_REGEX= .*\.([ch]|cpp)

A similar option is DOS2UNIX_GLOB, which runs find for each element listed in it.

USES= dos2unix
DOS2UNIX_GLOB= *.c *.cpp *.h

The base directory for the conversion can be set. This is useful when there are multiple distfiles and
several contain files which require line-ending conversion.

USES= dos2unix
DOS2UNIX _WRKSRC= ${WRKDIR}

19

https://www.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=find&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=re_format&sektion=7&format=html

4.4.4. Patching Conditionally

Some ports need patches that are only applied for specific FreeBSD versions or when a particular
option is enabled or disabled. Conditional patches are specified by placing the full paths to the
patch files in EXTRA_PATCHES.

{5l 1. Applying a Patch for a Specific FreeBSD Version

.include <bsd.port.options.mk>

Patch in the iconv const qualifier before this
.if ${OPSYS} == FreeBSD && ${0OSVERSION} < 1100069
EXTRA_PATCHES= ${PATCHDIR}/extra-patch-fbsd10
.endif

.include <bsd.port.mk>

{5 2. Optionally Applying a Patch

When an option requires a patch, use opt_EXTRA_PATCHES and opt_EXTRA_PATCHES_OFF to make
the patch conditional on the opt option. See Generic Variables Replacement for more
information.

OPTIONS_DEFINE= FOO BAR

FOO_EXTRA_PATCHES= ${PATCHDIR}/extra-patch-foo

BAR_EXTRA_PATCHES_OFF= ${PATCHDIR}/extra-patch-bar.c \
${PATCHDIR}/extra-patch-bar.h

20

../makefiles/index.html#makefile-options
../makefiles/index.html#options-variables

{5 3. Using EXTRA_PATCHES With a Directory

Sometime, there are many patches that are needed for a feature, in this case, it is possible to
point EXTRA_PATCHES to a directory, and it will automatically apply all files named patch-* in it.

Create a subdirectory in ${PATCHDIR}, and move the patches in it. For example:

% 1s -1 files/foo-patches
-rw-r--r-- 1 root wheel 350 Jan 16 01:27 patch-Makefile.in
-rw-r--r-- 1 root wheel 3084 Jan 18 15:37 patch-configure

Then add this to the Makefile:

OPTIONS_DEFINE= FOO
FOO_EXTRA_PATCHES= ${PATCHDIR}/foo-patches

The framework will then use all the files named patch-* in that directory.

4.5. 3%7F

Include any additional customization commands in the configure script and save it in the scripts
subdirectory. As mentioned above, it is also possible do this with Makefile targets and/or scripts
with the name pre-configure or post-configure.

4.6. BRIB(FRET A

If the port requires user input to build, configure, or install, set IS_INTERACTIVE in the Makefile. This
will allow "overnight builds" to skip it. If the user sets the variable BATCH in their environment (and
if the user sets the variable INTERACTIVE, then only those ports requiring interaction are built). This
will save a lot of wasted time on the set of machines that continually build ports (see below).

It is also recommended that if there are reasonable default answers to the questions,
PACKAGE _BUILDING be used to turn off the interactive script when it is set. This will allow us to build
the packages for CDROMs and FTP.

21

Chapter 5. Configuring the Makefile

Configuring the Makefile is pretty simple, and again we suggest looking at existing examples before
starting. Also, there is a sample Makefile in this handbook, so take a look and please follow the
ordering of variables and sections in that template to make the port easier for others to read.

Consider these problems in sequence during the design of the new Makefile:

5.1. The Original Source

Does it live in DISTDIR as a standard gzipped tarball named something like foozolix-1.2.tar.gz? If so,
go on to the next step. If not, the distribution file format might require overriding one or more of
DISTVERSION, DISTNAME, EXTRACT_CMD, EXTRACT_BEFORE_ARGS, EXTRACT_AFTER_ARGS, EXTRACT_SUFX, or
DISTFILES.

In the worst case, create a custom do-extract target to override the default. This is rarely, if ever,
necessary.

5.2. Naming

The first part of the port’s Makefile names the port, describes its version number, and lists it in the
correct category.

5.2.1. PORTNAME

Set PORTNAME to the base name of the software. It is used as the base for the FreeBSD package, and
for DISTNAME.

The package name must be unique across the entire ports tree. Make sure that the
o PORTNAME is not already in use by an existing port, and that no other port already
has the same PKGBASE. If the name has already been used, add either PKGNAMEPREFIX
or PKGNAMESUFFIX.
5.2.2. Versions, DISTVERSION or PORTVERSION

Set DISTVERSION to the version number of the software.

PORTVERSION is the version used for the FreeBSD package. It will be automatically derived from
DISTVERSION to be compatible with FreeBSD’s package versioning scheme. If the version contains
letters, it might be needed to set PORTVERSION and not DISTVERSION.

o Only one of PORTVERSION and DISTVERSION can be set at a time.

From time to time, some software will use a version scheme that is not compatible with how
DISTVERSION translates in PORTVERSION.

22

../porting-samplem/index.html#porting-samplem

When updating a port, it is possible to use pkg-version(8)'s -t argument to check if
(;) the new version is greater or lesser than before. See Using pkg-version(8) to
t Compare Versions.

{5l 4. Using pkg-version(8) to Compare Versions

pkg version -t takes two versions as arguments, it will respond with <, = or > if the first version
is less, equal, or more than the second version, respectively.

% pkg version -t 1.2 1.3
<@
% pkg version -t 1.2 1.2
=@
% pkg version -t 1.2 1.2.0
=Q
% pkg version -t 1.2 1.2.p1
> @
% pkg version -t 1.2.a1 1.2.b1
<®
% pkg version -t 1.2 1.2p1
<®

® 1.2 is before 1.3.

S

.2and 1.2 are equal as they have the same version.

@

.2and 1.2.0 are equal as nothing equals zero.

®

.2 1is after 1.2.p1 as .p1, think "pre-release 1".

)

.2.311is before 1.2.b1, think "alpha" and "beta", and a is before b.

©)

.2 is before 1.2p1 as 2p1, think "2, patch level 1" which is a version after any 2.X but before

w

In here, the 3, b, and p are used as if meaning "alpha", "beta" or "pre-release" and "patch
level", but they are only letters and are sorted alphabetically, so any letter can be used,
and they will be sorted appropriately.

2 1. Examples of DISTVERSION and the Derived PORTVERSION

DISTVE PORTVERSION
RSION

0.7.1d 0.7.1d

10Alpha 10.a3
3

3Beta7- 3.b7.p2
pre2

https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html

DISTVE PORTVERSION
RSION

8:f 17 8f.17
{5 5. Using DISTVERSION

When the version only contains numbers separated by dots, dashes or underscores, use
DISTVERSION.

PORTNAME= nekoto
DISTVERSION= 1.2-4

It will generate a PORTVERSION of 1.2.4.

24

{5l 6. Using DISTVERSION When the Version Starts with a Letter or a Prefix

When the version starts or ends with a letter, or a prefix or a suffix that is not part of the
version, use DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSUFFIX.

If the version is v1.2-4:

PORTNAME= nekoto
DISTVERSIONPREFIX= v
DISTVERSION= 124

Some of the time, projects using GitHub will use their name in their versions. For example, the
version could be nekoto-1.2-4:

PORTNAME= nekoto
DISTVERSIONPREFIX= nekoto-
DISTVERSION= 1.2 4

Those projects also sometimes use some string at the end of the version, for example, 1.2-
4_RELEASE:

PORTNAME= nekoto
DISTVERSION= 1.2-4
DISTVERSIONSUFFIX= _RELEASE

Or they do both, for example, nekoto-1.2-4_RELEASE:

PORTNAME= nekoto
DISTVERSIONPREFIX= nekoto-
DISTVERSION= 1.2-4
DISTVERSIONSUFFIX= _RELEASE

DISTVERSIONPREFIX and DISTVERSIONSUFFIX will not be used while constructing PORTVERSION, but
only used in DISTNAME.

All will generate a PORTVERSION of 1.2.4.

25

{5 7. Using DISTVERSION When the Version Contains Letters Meaning "alpha", "beta", or "pre-release"
When the version contains numbers separated by dots, dashes or underscores, and letters are

used to mean "alpha", "beta" or "pre-release”, which is, before the version without the letters,
use DISTVERSION.

PORTNAME= nekoto
DISTVERSION= 1.2-pred

PORTNAME= nekoto
DISTVERSION= 1.2p4

Both will generate a PORTVERSION of 1.2.p4 which is before than 1.2. pkg-version(8) can be used
to check that fact:

% pkg version -t 1.2.p4 1.2

N

{5l 8. Not Using DISTVERSION When the Version Contains Letters Meaning "Patch Level”

When the version contains letters that are not meant as "alpha", "beta", or "pre", but more in a
"patch level", and meaning after the version without the letters, use PORTVERSION.

PORTNAME= nekoto
PORTVERSION= 1.2p4

In this case, using DISTVERSION is not possible because it would generate a version of 1.2.p4
which would be before 1.2 and not after. pkg-version(8) will verify this:

% pkg version -t 1.2 1.2.p4
0]
pkg version -t 1.2 1.2p4
@

Vv

o°

N

™ 1.2 is after 1.2.p4, which is wrong in this case.

@ 1.2 is before 1.2p4, which is what was needed.

For some more advanced examples of setting PORTVERSION, when the software’s versioning is really
not compatible with FreeBSD’s, or DISTNAME when the distribution file does not contain the version
itself, see DISTNAME.

26

https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html

5.2.3. PORTREVISION and PORTEPOCH

5.2.3.1. PORTREVISION

PORTREVISION is a monotonically increasing value which is reset to 0 with every increase of
DISTVERSION, typically every time there is a new official vendor release. If PORTREVISION is non-zero,
the value is appended to the package name. Changes to PORTREVISION are used by automated tools
like pkg-version(8) to determine that a new package is available.

PORTREVISION must be increased each time a change is made to the port that changes the generated
package in any way. That includes changes that only affect a package built with non-default options.

Examples of when PORTREVISION must be bumped:

» Addition of patches to correct security vulnerabilities, bugs, or to add new functionality to the
port.

* Changes to the port Makefile to enable or disable compile-time options in the package.

* Changes in the packing list or the install-time behavior of the package. For example, a change to
a script which generates initial data for the package, like ssh(1) host keys.

* Version bump of a port’s shared library dependency (in this case, someone trying to install the
old package after installing a newer version of the dependency will fail since it will look for the
old libfoo.x instead of libfoo.(x+1)).

« Silent changes to the port distfile which have significant functional differences. For example,
changes to the distfile requiring a correction to distinfo with no corresponding change to
DISTVERSION, where a diff -ru of the old and new versions shows non-trivial changes to the
code.

Examples of changes which do not require a PORTREVISION bump:

« Style changes to the port skeleton with no functional change to what appears in the resulting
package.

* Changes to MASTER_SITES or other functional changes to the port which do not affect the
resulting package.

 Trivial patches to the distfile such as correction of typos, which are not important enough that
users of the package have to go to the trouble of upgrading.

* Build fixes which cause a package to become compilable where it was previously failing. As
long as the changes do not introduce any functional change on any other platforms on which
the port did previously build. Since PORTREVISION reflects the content of the package, if the
package was not previously buildable then there is no need to increase PORTREVISION to mark a
change.

A rule of thumb is to decide whether a change committed to a port is something which some people
would benefit from having. Either because of an enhancement, fix, or by virtue that the new
package will actually work at all. Then weigh that against that fact that it will cause everyone who
regularly updates their ports tree to be compelled to update. If yes, PORTREVISION must be bumped.

27

https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html

People using binary packages will never see the update if PORTREVISION is not
bumped. Without increasing PORTREVISION, the package builders have no way to
detect the change and thus, will not rebuild the package.

5.2.3.2. PORTEPOCH

From time to time a software vendor or FreeBSD porter will do something silly and release a
version of their software which is actually numerically less than the previous version. An example
of this is a port which goes from fo0-20000801 to foo-1.0 (the former will be incorrectly treated as a
newer version since 20000801 is a numerically greater value than 1).

The results of version number comparisons are not always obvious. pkg version

(see pkg-version(8)) can be used to test the comparison of two version number
strings. For example:

O % pkg version -t 0.031 0.29

Vv

The > output indicates that version 0.031 is considered greater than version 0.29,
which may not have been obvious to the porter.

In situations such as this, PORTEPOCH must be increased. If PORTEPOCH is nonzero it is appended to the
package name as described in section 0 above. PORTEPOCH must never be decreased or reset to zero,
because that would cause comparison to a package from an earlier epoch to fail. For example, the
package would not be detected as out of date. The new version number, 1.0,1 in the above
example, is still numerically less than the previous version, 20000801, but the ,1 suffix is treated
specially by automated tools and found to be greater than the implied suffix ,0 on the earlier
package.

Dropping or resetting PORTEPOCH incorrectly leads to no end of grief. If the discussion above was not
clear enough, please consult the FreeBSD ports Z5mE.

It is expected that PORTEPOCH will not be used for the majority of ports, and that sensible use of
DISTVERSION, or that use PORTVERSION carefully, can often preempt it becoming necessary if a future
release of the software changes the version structure. However, care is needed by FreeBSD porters
when a vendor release is made without an official version number - such as a code "snapshot"
release. The temptation is to label the release with the release date, which will cause problems as in
the example above when a new "official" release is made.

For example, if a snapshot release is made on the date 20000917, and the previous version of the
software was version 1.2, do not use 20000917 for DISTVERSION. The correct way is a DISTVERSION of
1.2.20000917, or similar, so that the succeeding release, say 1.3, is still a numerically greater value.

5.2.3.3. Example of PORTREVISION and PORTEPOCH Usage

The gtkmumble port, version 0. 10, is committed to the ports collection:

28

https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports

PORTNAME= gtkmumble
DISTVERSION= 0.10

PKGNAME becomes gtkmumble-0.10.

A security hole is discovered which requires a local FreeBSD patch. PORTREVISION is bumped
accordingly.

PORTNAME= gtkmumble
DISTVERSION= 0.10
PORTREVISION= 1

PKGNAME becomes gtkmumble-0.10_1

A new version is released by the vendor, numbered 0.2 (it turns out the author actually intended
0.10 to actually mean 0.1.0, not "what comes after 0.9" - oops, too late now). Since the new minor
version 2 is numerically less than the previous version 10, PORTEPOCH must be bumped to manually
force the new package to be detected as "newer". Since it is a new vendor release of the code,
PORTREVISION is reset to 0 (or removed from the Makefile).

PORTNAME= gtkmumble
DISTVERSION= 0.2
PORTEPOCH= 1

PKGNAME becomes gtkmumble-0.2,1

The next release is 0.3. Since PORTEPOCH never decreases, the version variables are now:

PORTNAME= gtkmumble
DISTVERSION= 0.3
PORTEPOCH= 1

PKGNAME becomes gtkmumble-0.3,1

If PORTEPOCH were reset to 0 with this upgrade, someone who had installed the

o gtkmumble-0.10_1 package would not detect the gtkmumble-0.3 package as newer,
since 3 is still numerically less than 10. Remember, this is the whole point of
PORTEPOCH in the first place.

5.2.4. PKGNAMEPREFIX and PKGNAMESUFFIX

Two optional variables, PKGNAMEPREFIX and PKGNAMESUFFIX, are combined with PORTNAME and
PORTVERSION to form PKGNAME as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make
sure this conforms to our guidelines for a good package name. In particular, the use of a hyphen (-)
in PORTVERSION is not allowed. Also, if the package name has the language- or the -compiled.specifics

29

part (see below), use PKGNAMEPREFIX and PKGNAMESUFFIX, respectively. Do not make them part of
PORTNAME.

5.2.5. Package Naming Conventions

These are the conventions to follow when naming packages. This is to make the package directory
easy to scan, as there are already thousands of packages and users are going to turn away if they
hurt their eyes!

Package names take the form of language_region-name-compiled.specifics-version.numbers.

The package name is defined as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make
sure to set the variables to conform to that format.

language_region-

FreeBSD strives to support the native language of its users. The language- part is a two letter
abbreviation of the natural language defined by ISO-639 when the port is specific to a certain
language. Examples are ja for Japanese, ru for Russian, vi for Vietnamese, zh for Chinese, ko for
Korean and de for German.

If the port is specific to a certain region within the language area, add the two letter country
code as well. Examples are en_US for US English and fr_CH for Swiss French.

The language- part is set in PKGNAMEPREFIX.

name

Make sure that the port’s name and version are clearly separated and placed into PORTNAME and
DISTVERSION. The only reason for PORTNAME to contain a version part is if the upstream distribution
is really named that way, as in the textproc/libxml2 or japanese/kinput2-freewnn ports.
Otherwise, PORTNAME cannot contain any version-specific information. It is quite normal for
several ports to have the same PORTNAME, as the www/apache® ports do; in that case, different
versions (and different index entries) are distinguished by PKGNAMEPREFIX and PKGNAMESUFFIX
values.

There is a tradition of naming Perl 5 modules by prepending p5- and converting the double-
colon separator to a hyphen. For example, the Data: :Dumper module becomes p5-Data-Dumper.

-compiled.specifics

If the port can be built with different hardcoded defaults (usually part of the directory name in a
family of ports), the -compiled.specifics part states the compiled-in defaults. The hyphen is
optional. Examples are paper size and font units.

The -compiled.specifics part is set in PKGNAMESUFFIX.

-version.numbers

30

The version string follows a dash (-) and is a period-separated list of integers and single
lowercase alphabetics. In particular, it is not permissible to have another dash inside the version
string. The only exception is the string pl (meaning "patchlevel"), which can be used only when
there are no major and minor version numbers in the software. If the software version has

https://cgit.freebsd.org/ports/tree/textproc/libxml2/pkg-descr
https://cgit.freebsd.org/ports/tree/japanese/kinput2-freewnn/pkg-descr
https://cgit.freebsd.org/ports/tree/www/apache*/pkg-descr

strings like "alpha", "beta", "rc

"

, or "pre", take the first letter and put it immediately after a

period. If the version string continues after those names, the numbers follow the single alphabet
without an extra period between them (for example, 1.0b2).

The idea is to make it easier to sort ports by looking at the version string. In particular, make
sure version number components are always delimited by a period, and if the date is part of the
string, use the dyyyy.mm.dd format, not dd.mm.yyyy or the non-Y2K compliant yy.mm.dd format. It is
important to prefix the version with a letter, here d (for date), in case a release with an actual
version number is made, which would be numerically less than yyyy.

Package name must be unique among all of the ports tree, check that there is not
already a port with the same PORTNAME and if there is add one of PKGNAMEPREFIX or
PKGNAMESUFFIX.

Here are some (real) examples on how to convert the name as called by the software authors to a
suitable package name, for each line, only one of DISTVERSION or PORTVERSION is set in, depending on
which would be used in the port’s Makefile:

& 2. Package Naming Examples

Distribution

Name

mule-2.2.2

mule-1.0.1

EmicClock-
1.0.2

rdist-
1.3alpha

es-0.9-betal

mailman-
2.0rc3

v3.3beta021.

Src

PKGNAMEP PORTNAME PKGNAMES DISTVERSIO PORTVERSI Reason or

REFIX

(empty)

(empty)

(empty)

(empty)

(empty)

(empty)

(empty)

mule

mule

emiclock

rdist

es

mailman

tiff

UFFIX

(empty)

(empty)

(empty)

(empty)

(empty)

(empty)

N ON

2.2.2

1.0.1

1.0.2

1.3alpha

0.9-betal

2.0rc3

3.3

comment

No changes
required
This is
version 1 of
mule, and
version 2
already
exists

No
uppercase
names for
single
programs

Version will
be 1.3.a

Version will
be 0.9.b1

Version will
be 2.0.r3

What the
heck was
that

anyway?

31

Distribution PKGNAMEP PORTNAME PKGNAMES DISTVERSIO PORTVERSI Reason or
Name REFIX UFFIX N ON comment

tvtwm (empty) tvtwm (empty) pl1 No version
in the
filename,
use what
upstream
says it is

piewm (empty) piewm (empty) 1.0 No version
in the
filename,
use what
upstream
says it is

xvgr-2.10pll (empty) XVgr (empty) 2.10.pl1 In that case,
pl1 means
patch level,
SO using
DISTVERSIO
N is not
possible.

gawk-2.15.6 ja- gawk (empty) 2.15.6 Japanese
language
version

psutils-1.13 (empty) psutils -letter 1.13 Paper size
hardcoded at
package
build time

pkfonts (empty) pkfonts 300 1.0 Package for
300dpi fonts

If there is absolutely no trace of version information in the original source and it is unlikely that the
original author will ever release another version, just set the version string to 1.0 (like the piewm
example above). Otherwise, ask the original author or use the date string the source file was
released on (dyyyy.mm.dd, or dyyyymmdd) as the version.

Use any letter. Here, d here stands for date, if the source is a Git repository, g

(2
O followed by the commit date is commonly used, using s for snapshot is also
w

common.

5.3. Categorization

32

5.3.1. CATEGORIES

When a package is created, it is put under /usr/ports/packages/All and links are made from one or
more subdirectories of /usr/ports/packages. The names of these subdirectories are specified by the
variable CATEGORIES. It is intended to make life easier for the user when he is wading through the
pile of packages on the FTP site or the CDROM. Please take a look at the current list of categories
and pick the ones that are suitable for the port.

This list also determines where in the ports tree the port is imported. If there is more than one
category here, the port files must be put in the subdirectory with the name of the first category. See
below for more discussion about how to pick the right categories.

5.3.2. Current List of Categories

Here is the current list of port categories. Those marked with an asterisk (*) are virtual categories-
those that do not have a corresponding subdirectory in the ports tree. They are only used as
secondary categories, and only for search purposes.

o For non-virtual categories, there is a one-line description in COMMENT in that
subdirectory’s Makefile.
Category Description Notes
accessibility Ports to help disabled users.
afterstep™ Ports to support the AfterStep
window manager.
arabic Arabic language support.
archivers Archiving tools.
astro Astronomical ports.
audio Sound support.
benchmarks Benchmarking utilities.
biology Biology-related software.
cad Computer aided design tools.
chinese Chinese language support.
comms Communication software. Mostly software to talk to the
serial port.
converters Character code converters.
databases Databases.
deskutils Things that used to be on the

desktop before computers were
invented.

33

http://www.afterstep.org

Category

devel

dns

docs*

editors

education*

elisp*

emulators

enlightenment*

finance

french

ftp

games

geography*

34

Description

Development utilities.

DNS-related software.

Meta-ports for FreeBSD
documentation.

General editors.

Education-related software.

Emacs-lisp ports.

Emulators for other operating
systems.

Ports related to the
Enlightenment window
manager.

Monetary, financial and related

applications.
French language support.

FTP client and server utilities.

Games.

Geography-related software.

Notes

Do not put libraries here just
because they are libraries. They
should not be in this category
unless they truly do not belong
anywhere else.

Specialized editors go in the
section for those tools. For
example, a mathematical-
formula editor will go in math,
and have editors as a second
category.

This includes applications,
utilities, or games primarily or
substantially designed to help
the user learn a specific topic or
study in general. It also includes
course-writing applications,
course-delivery applications,
and classroom or school
management applications

Terminal emulators do not
belong here. X-based ones go to
x11 and text-based ones to
either comms or misc,
depending on the exact
functionality.

If the port speaks both FTP and
HTTP, put it in ftp with a
secondary category of www.

Category
german
gnome*

gnustep*

graphics
hamradio*

haskell*

hebrew
hungarian
irc
japanese

java

kde*

kde-applications*

kde-frameworks*

kde-plasma*

kld*

korean

lang

linux*

lisp*

mail

mate*

Description Notes
German language support.
Ports from the GNOME Project.

Software related to the GNUstep
desktop environment.

Graphics utilities.
Software for amateur radio.

Software related to the Haskell
language.

Hebrew language support.
Hungarian language support.
Internet Relay Chat utilities.
Japanese language support.

Software related to the Java™ The java category must not be

language. the only one for a port. Save for
ports directly related to the Java
language, porters are also
encouraged not to use java as
the main category of a port.

Ports from the KDE Project
(generic).

Applications from the KDE
Project.

Add-on libraries from the KDE
Project for programming with

Qt.

Desktop from the KDE Project.
Kernel loadable modules.
Korean language support.
Programming languages.

Linux applications and support
utilities.

Software related to the Lisp
language.

Mail software.

Ports related to the MATE
desktop environment, a fork of
GNOME 2.

35

http://www.gnome.org
http://www.kde.org
http://www.kde.org
http://www.kde.org
http://www.kde.org

Category

math

mbone*

misc

multimedia

net

net-im

net-mgmt

net-p2p

net-vpn*

news

parallel*

pear*

perl5*

plan9*
polish

ports-mgmt

portuguese

print

python*

ruby*

36

Description Notes

Numerical computation
software and other utilities for
mathematics.

MBone applications.

Miscellaneous utilities Things that do not belong
anywhere else. If at all possible,
try to find a better category for
the port than misc, as ports tend
to be overlooked in here.

Multimedia software.

Miscellaneous networking
software.

Instant messaging software.

Networking management
software.

Peer to peer network
applications.

Virtual Private Network
applications.

USENET news software.

Applications dealing with
parallelism in computing.

Ports related to the Pear PHP
framework.

Ports that require Perl version 5
to run.

Various programs from Plan9.
Polish language support.

Ports for managing, installing
and developing FreeBSD ports
and packages.

Portuguese language support.

Printing software. Desktop publishing tools
(previewers, etc.) belong here
too.

Software related to the Python
language.

Software related to the Ruby
language.

http://www.cs.bell-labs.com/plan9dist/
http://www.python.org/
http://www.ruby-lang.org/

Category
rubygems*
russian

scheme*

science

security
shells
spanish*
sysutils
tel*

textproc

tk*
ukrainian
viethamese

wayland*

windowmaker*

x11

x11-clocks
x11-drivers
x11-fm
x11-fonts
x11-servers
x11-themes

x11-toolkits

Description
Ports of RubyGems packages.

Russian language support.

Software related to the Scheme

language.

Scientific ports that do not fit
into other categories such as
astro, biology and math.

Security utilities.
Command line shells.
Spanish language support.
System utilities.

Ports that use Tcl to run.

Text processing utilities.

Ports that use Tk to run.

Ukrainian language support.

Vietnamese language support.

Ports to support the Wayland
display server.

Ports to support the Window
Maker window manager.

Software related to the World
Wide Web.

The X Window System and
friends.

X11 clocks.

X11 drivers.

X11 file managers.

X11 fonts and font utilities.
X11 servers.

X11 themes.

X11 toolkits.

Notes

It does not include desktop
publishing tools, which go to
print.

HTML language support
belongs here too.

This category is only for
software that directly supports
the window system. Do not put
regular X applications here.
Most of them go into other x11-
* categories (see below).

37

http://www.rubygems.org/

Category Description Notes
x11-wm X11 window managers.

xfce* Ports related to the Xfce
desktop environment.

zope* Zope support.

5.3.3. Choosing the Right Category

As many of the categories overlap, choosing which of the categories will be the primary category of
the port can be tedious. There are several rules that govern this issue. Here is the list of priorities, in
decreasing order of precedence:

* The first category must be a physical category (see above). This is necessary to make the
packaging work. Virtual categories and physical categories may be intermixed after that.

* Language specific categories always come first. For example, if the port installs Japanese X11
fonts, then the CATEGORIES line would read japanese x11-fonts.

 Specific categories are listed before less-specific ones. For instance, an HTML editor is listed as
www editors, not the other way around. Also, do not list net when the port belongs to any of irc,
mail, news, security, or www, as net is included implicitly.

* x11 is used as a secondary category only when the primary category is a natural language. In
particular, do not put x11 in the category line for X applications.

* Emacs modes are placed in the same ports category as the application supported by the mode,
not in editors. For example, an Emacs mode to edit source files of some programming language
goes into lang.

* Ports installing loadable kernel modules also have the virtual category kld in their CATEGORIES
line. This is one of the things handled automatically by adding USES=kmod.

* misc does not appear with any other non-virtual category. If there is misc with something else in
CATEGORIES, that means misc can safely be deleted and the port placed only in the other
subdirectory.

o If the port truly does not belong anywhere else, put it in misc.
If the category is not clearly defined, please put a comment to that effect in the port submission in
the bug database so we can discuss it before we import it. As a committer, send a note to the

FreeBSD ports #[5@E so we can discuss it first. Too often, new ports are imported to the wrong
category only to be moved right away.

5.3.4. Proposing a New Category

As the Ports Collection has grown over time, various new categories have been introduced. New
categories can either be virtual categories-those that do not have a corresponding subdirectory in
the ports tree- or physical categories-those that do. This section discusses the issues involved in
creating a new physical category. Read it thouroughly before proposing a new one.

Our existing practice has been to avoid creating a new physical category unless either a large

38

http://www.xfce.org/
http://www.zope.org/
https://bugs.freebsd.org/submit/
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports

number of ports would logically belong to it, or the ports that would belong to it are a logically
distinct group that is of limited general interest (for instance, categories related to spoken human
languages), or preferably both.

The rationale for this is that such a change creates a fair amount of work for both the committers
and also for all users who track changes to the Ports Collection. In addition, proposed category
changes just naturally seem to attract controversy. (Perhaps this is because there is no clear
consensus on when a category is "too big", nor whether categories should lend themselves to
browsing (and thus what number of categories would be an ideal number), and so forth.)

Here is the procedure:

1. Propose the new category on FreeBSD ports #[Z&!E. Include a detailed rationale for the new
category, including why the existing categories are not sufficient, and the list of existing ports
proposed to move. (If there are new ports pending in Bugzilla that would fit this category, list
them too.) If you are the maintainer and/or submitter, respectively, mention that as it may help
the case.

2. Participate in the discussion.

3. If it seems that there is support for the idea, file a PR which includes both the rationale and the
list of existing ports that need to be moved. Ideally, this PR would also include these patches:

o Makefiles for the new ports once they are repocopied

o Makefile for the new category

o

Makefile for the old ports' categories

o

Makefiles for ports that depend on the old ports

o (for extra credit, include the other files that have to change, as per the procedure in the
Committer’s Guide.)

4. Since it affects the ports infrastructure and involves moving and patching many ports but also
possibly running regression tests on the build cluster, assign the PR to the Ports Management
Team <portmgr@¥FreeBSD.org>.

5. If that PR is approved, a committer will need to follow the rest of the procedure that is outlined
in the Committer’s Guide.

Proposing a new virtual category is similar to the above but much less involved, since no ports will
actually have to move. In this case, the only patches to include in the PR would be those to add the
new category to CATEGORIES of the affected ports.

5.3.5. Proposing Reorganizing All the Categories

Occasionally someone proposes reorganizing the categories with either a 2-level structure, or some
other kind of keyword structure. To date, nothing has come of any of these proposals because,
while they are very easy to make, the effort involved to retrofit the entire existing ports collection
with any kind of reorganization is daunting to say the very least. Please read the history of these
proposals in the mailing list archives before posting this idea. Furthermore, be prepared to be
challenged to offer a working prototype.

39

https://docs.freebsd.org/en/articles/committers-guide/#ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
mailto:portmgr@FreeBSD.org
https://docs.freebsd.org/en/articles/committers-guide/#ports
https://docs.freebsd.org/en/articles/committers-guide/#ports

5.4. The Distribution Files

The second part of the Makefile describes the files that must be downloaded to build the port, and
where they can be downloaded.

5.4.1. DISTNAME

DISTNAME is the name of the port as called by the authors of the software. DISTNAME defaults to
${PORTNAME}-${DISTVERSIONPREFIX}${DISTVERSION}${DISTVERSIONSUFFIX}, and if not set, DISTVERSION
defaults to ${PORTVERSION} so override DISTNAME only if necessary. DISTNAME is only used in two places.
First, the distribution file list (DISTFILES) defaults to ${DISTNAME}${EXTRACT_SUFX}. Second, the
distribution file is expected to extract into a subdirectory named WRKSRC, which defaults to
work/${DISTNAME}.

Some vendor’s distribution names which do not fit into the ${PORTNAME}-${PORTVERSION}-scheme can
be handled automatically by setting DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSUFFIX.
PORTVERSION will be derived from DISTVERSION automatically.

o Only one of PORTVERSION and DISTVERSION can be set at a time. If DISTVERSION does
not derive a correct PORTVERSION, do not use DISTVERSION.

If the upstream version scheme can be derived into a ports-compatible version scheme, set some
variable to the upstream version, do not use DISTVERSION as the variable name. Set PORTVERSION to
the computed version based on the variable you created, and set DISTNAME accordingly.

If the upstream version scheme cannot easily be coerced into a ports-compatible value, set
PORTVERSION to a sensible value, and set DISTNAME with PORTNAME with the verbatim upstream version.

40

{5l 9. Deriving PORTVERSION Manually

BIND9 uses a version scheme that is not compatible with the ports versions (it has - in its
versions) and cannot be derived using DISTVERSION because after the 9.9.9 release, it will
release a "patchlevels" in the form of 9.9.9-P1. DISTVERSION would translate that into
9.9.9.p1, which, in the ports versioning scheme means 9.9.9 pre-release 1, which is before 9.9.9
and not after. So PORTVERSION is manually derived from an ISCVERSION variable to output
9.9.9p1.

The order into which the ports framework, and pkg, will sort versions is checked using the -t
argument of pkg-version(8):

% pkg version -t 9.9.9 9.9.9.p1
O]
pkg version -t 9.9.9 9.9.9p1
@

Vv

)
°

N

@ The > sign means that the first argument passed to -t is greater than the second argument.
9.9.9is after 9.9.9.p1.

@ The < sign means that the first argument passed to -t is less than the second argument.
9.9.9 is before 9.9.9p1.

In the port Makefile, for example dns/bind99, it is achieved by:

PORTNAME= bind

PORTVERSION= ${ISCVERSION:S/-P/P/:S/b/.b/:S/a/.a/:S/rc/.rc/?}
CATEGORIES= dns net

MASTER_SITES= ISC/bind9/${ISCVERSION}

PKGNAMESUFFIX= 99

DISTNAME= ${PORTNAME}-${ISCVERSION}

MAINTAINER= mat@FreeBSD.org
COMMENT= BIND DNS suite with updated DNSSEC and DNS64

LICENSE= ISCL

ISC releases things like 9.8.0-P1 or 9.8.1rc1, which our versioning does not
like
ISCVERSION= 9.9.9-P6

Define upstream version in ISCVERSION, with a comment saying why it is needed. Use ISCVERSION
to get a ports-compatible PORTVERSION. Use ISCVERSION directly to get the correct URL for
fetching the distribution file. Use ISCVERSION directly to name the distribution file.

41

https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/dns/bind99/pkg-descr

{5l 10. Derive DISTNAME from PORTVERSION

From time to time, the distribution file name has little or no relation to the version of the
software.

In comms/kermit, only the last element of the version is present in the distribution file:

PORTNAME= kermit

PORTVERSION= 9.0.304

CATEGORIES= comms ftp net

MASTER_SITES= ftp://ftp.kermitproject.org/kermit/test/tar/
DISTNAME= cku${PORTVERSION:E}-dev20

The :E make(1) modifier returns the suffix of the variable, in this case, 304. The distribution file
is correctly generated as cku304-dev20.tar.gz.

{5 11. Exotic Case 1

Sometimes, there is no relation between the software name, its version, and the distribution
file it is distributed in.

From audio/libworkman:

PORTNAME= 1ibworkman
PORTVERSION= 1.4

CATEGORIES= audio

MASTER_SITES= LOCAL/jim

DISTNAME= ${PORTNAME}-1999-06-20

{5l 12. Exotic Case 2

In comms/librs232, the distribution file is not versioned, so using DIST_SUBDIR is needed:

PORTNAME= librs232

PORTVERSION= 20160710

CATEGORIES= comms

MASTER_SITES= http://www.teuniz.net/RS-232/
DISTNAME= RS-232

DIST_SUBDIR= ${PORTNAME}-${PORTVERSION}

42

https://cgit.freebsd.org/ports/tree/comms/kermit/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/audio/libworkman/pkg-descr
https://cgit.freebsd.org/ports/tree/comms/librs232/pkg-descr

PKGNAMEPREFIX and PKGNAMESUFFIX do not affect DISTNAME. Also note that if WRKSRC is
equal to ${WRKDIR}/${DISTNAME} while the original source archive is named

o something other than ${PORTNAME}-${PORTVERSION}${EXTRACT_SUFX}, leave DISTNAME
alone- defining only DISTFILES is easier than both DISTNAME and WRKSRC (and
possibly EXTRACT_SUFX).

5.4.2. MASTER_SITES

Record the directory part of the FTP/HTTP-URL pointing at the original tarball in MASTER_SITES. Do
not forget the trailing slash (/)!

The make macros will try to use this specification for grabbing the distribution file with FETCH if they
cannot find it already on the system.

It is recommended that multiple sites are included on this list, preferably from different continents.
This will safeguard against wide-area network problems.

MASTER_SITES must not be blank. It must point to the actual site hosting the
distribution files. It cannot point to web archives, or the FreeBSD distribution files

o cache sites. The only exception to this rule is ports that do not have any
distribution files. For example, meta-ports do not have any distribution files, so
MASTER_SITES does not need to be set.

5.4.2.1. Using MASTER_SITE_* Variables

Shortcut abbreviations are available for popular archives like SourceForge (SOURCEFORGE), GNU (GNU),
or Perl CPAN (PERL_CPAN). MASTER_SITES can use them directly:

MASTER_SITES= GNU/make

The older expanded format still works, but all ports have been converted to the compact format.
The expanded format looks like this:

MASTER_SITES= ${MASTER_SITE_GNU}
MASTER_SITE_SUBDIR= make

These values and variables are defined in Mk/bsd.sites.mk. New entries are added often, so make
sure to check the latest version of this file before submitting a port.

43

https://cgit.freebsd.org/ports/tree/Mk/bsd.sites.mk

For any MASTER_SITE_FO00 variable, the shorthand FOO can be used. For example, use:

MASTER_SITES= FOO

- If MASTER_SITE SUBDIR is needed, use this:
MASTER_SITES= FOO/bar

Some MASTER_SITE_* names are quite long, and for ease of use, shortcuts have been
defined:
% 3. Shortcuts for MASTER_SITE_* Macros
Macro Shortcut
PERL_CPAN CPAN

o GITHUB GH
GITHUB_CLOUD GHC
LIBREOFFICE DEV LODEV
NETLIB NL
RUBYGEMS RG
SOURCEFORGE SF

5.4.2.2. Magic MASTER_SITES Macros

Several "magic" macros exist for popular sites with a predictable directory structure. For these, just
use the abbreviation and the system will choose a subdirectory automatically. For a port named
Stardict, of version 1.2.3, and hosted on SourceForge, adding this line:

MASTER_SITES= SF

infers a subdirectory named /project/stardict/stardict/1.2.3. If the inferred directory is
incorrect, it can be overridden:

MASTER_SITES= SF/stardict/WyabdcRealPeopleTTS/${PORTVERSION}

This can also be written as

MASTER_SITES= SF
MASTER_SITE_SUBDIR= stardict/WyabdcRealPeopleTTS/${PORTVERSION}

% 4. Magic MASTER_SITES Macros

44

Macro Assumed subdirectory

APACHE_COMMONS_BINARIES ${PORTNAME: S, commons-, , }

APACHE_COMMONS_SOURCE ${PORTNAME: S, commons-, , }

APACHE_JAKARTA ${PORTNAME:S,-,/,}/source

BERLIOS ${PORTNAME: t1}.berlios

CHEESESHOP source/${DISTNAME:C/(.).*/\1/}/${DISTNAME:C/(.
)-[0-91./\1/}

CPAN ${PORTNAME:C/-.*//}

DEBIAN pool/main/${PORTNAME:C/A((1ib)?.).*$/\1/}/${P0
RTNAME }

FARSIGHT ${PORTNAME}

FESTIVAL ${PORTREVISION}

Gce releases/${DISTNAME}

GENTOO distfiles

GIMP ${PORTNAME}/${PORTVERSION:R}/

GH ${GH_ACCOUNT}/${GH_PROJECT}/tar.gz/${GH_TAGNAM
E}?dummy=/

GHC ${GH_ACCOUNT}/${GH_PROJECT}/

GNOME sources/${PORTNAME}/${PORTVERSION:C/A([0-
91+\.[0-9]+).*/\1/}

GNU ${PORTNAME}

GNUPG ${PORTNAME}

GNU_ALPHA ${PORTNAME}

HORDE ${PORTNAME}

LODEV ${PORTNAME}

MATE ${PORTVERSION:C/A([0-9]1+\.[0-9]+).*/\1/}

MOZDEV ${PORTNAME: t1}

NL ${PORTNAME}

QT archive/qt/${PORTVERSION:R}

SAMBA ${PORTNAME}

SAVANNAH ${PORTNAME : t1}

SF ${PORTNAME : t1}/${PORTNAME : t1}/${PORTVERSION}

5.4.3. USE_GITHUB

If the distribution file comes from a specific commit or tag on GitHub for which there is no officially
released file, there is an easy way to set the right DISTNAME and MASTER_SITES automatically. These
variables are available:

2 5. USE_GITHUB Description

45

https://github.com

Variable
GH_ACCOUNT

GH_PROJECT
GH_TAGNAME

GH_SUBDIR

{5 13. Simple Use of USE_GITHUB

Description

Account name of the GitHub
user hosting the project

Name of the project on GitHub

Name of the tag to download
(2.0.1, hash, ...) Using the name
of a branch here is incorrect. It
is also possible to use the hash
of a commit id to do a snapshot.

When the software needs an
additional distribution file to be
extracted within ${WRKSRC}, this
variable can be used. See the
examples in Fetching Multiple
Files from GitHub for more
information.

Default
${PORTNAME}

${PORTNAME}

${DISTVERSIONPREFIX}${DISTVERS
ION}${DISTVERSIONSUFFIX}

(none)

Do not use GH_TUPLE for the default distribution file, as it has no default.

While trying to make a port for version 1.2.7 of pkg from the FreeBSD user on github, at
https://github.com/freebsd/pkg, The Makefile would end up looking like this (slightly stripped

for the example):

PORTNAME= pkg
DISTVERSION= 1.2.7
USE_GITHUB= yes
GH_ACCOUNT= freebsd

It will automatically have MASTER_SITES set to GH and WRKSRC to ${WRKDIR}/pkg-1.2.7.

46

https://github.com/freebsd/pkg

{5 14. More Complete Use of USE_GITHUB

While trying to make a port for the bleeding edge version of pkg from the FreeBSD user on
github, at https://github.com/freebsd/pkg, the Makefile ends up looking like this (slightly
stripped for the example):

PORTNAME= pkg-devel
DISTVERSION= 1.3.0.3.20140411

USE_GITHUB= yes
GH_ACCOUNT= freebsd

GH_PROJECT= pkg
GH_TAGNAME= 6dbb17b

It will automatically have MASTER_SITES set to GH and WRKSRC to ${WRKDIR}/pkg-6dbb17b.

20140411 is the date of the commit referenced in GH TAGNAME, not the date the Makefile is
edited, or the date the commit is made.

{5 15. Use of USE_GITHUB with DISTVERSIONPREFIX

From time to time, GH_TAGNAME is a slight variation from DISTVERSION. For example, if the version
is 1.0.2, the tag is v1.0.2. In those cases, it is possible to use DISTVERSIONPREFIX or
DISTVERSIONSUFFIX:

PORTNAME= foo
DISTVERSIONPREFIX= v
DISTVERSION= 1.0.2

USE_GITHUB= yes

It will automatically set GH_TAGNAME to v1.0.2, while WRKSRC will be kept to ${WRKDIR}/foo-1.0.2.

47

https://github.com/freebsd/pkg

{5l 16. Using USE_GITHUB When Upstream Does Not Use Versions

If there never was a version upstream, do not invent one like 0.1 or 1.0. Create the port with a
DISTVERSION of gYYYYMMDD, where g is for Git, and YYYYMMDD represents the date the commit
referenced in GH_TAGNAME.

PORTNAME= bar
DISTVERSION= g20140411

USE_GITHUB= yes
GH_TAGNAME= c472d66b

This creates a versioning scheme that increases over time, and that is still before version 0 (see
Using pkg-version(8) to Compare Versions for details on pkg-version(8)):

% pkg version -t 920140411 0

N

Which means using PORTEPOCH will not be needed in case upstream decides to cut versions in
the future.

48

https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html

{5l 17. Using USE_GITHUB to Access a Commit Between Two Versions

If the current version of the software uses a Git tag, and the port needs to be updated to a
newer, intermediate version, without a tag, use git-describe(1) to find out the version to use:

% git describe --tags f0038b1
v0.7.3-14-gf0038b1

v0.7.3-14-gf0038b1 can be split into three parts:

v0.7.3

This is the last Git tag that appears in the commit history before the requested commit.

-14
This means that the requested commit, f8038b1, is the 14th commit after the v0.7.3 tag.

-gf0038b1

The -g means "Git", and the f0038b1 is the commit hash that this reference points to.

PORTNAME= bar
DISTVERSIONPREFIX= v
DISTVERSION= 0.7.3-14
DISTVERSIONSUFFIX= -gf0038b1

USE_GITHUB= yes

This creates a versioning scheme that increases over time (well, over commits), and does not
conflict with the creation of a 0.7.4 version. (See Using pkg-version(8) to Compare Versions for
details on pkg-version(8)):

o

pkg version -t 0.7.3 0.7.3.14

N

o

pkg version -t 0.7.3.14 0.7.4

N

If the requested commit is the same as a tag, a shorter description is shown by default.
The longer version is equivalent:

% git describe --tags cbbc71d
v0.7.3

% git describe --tags --long cbbc71d
v0.7.3-0-gcbbc71d

49

https://www.freebsd.org/cgi/man.cgi?query=git-describe&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html

5.4.3.1. Fetching Multiple Files from GitHub

The USE_GITHUB framework also supports fetching multiple distribution files from different places in
GitHub. It works in a way very similar to Multiple Distribution or Patches Files from Multiple
Locations.

Multiple values are added to GH_ACCOUNT, GH_PROJECT, and GH_TAGNAME. Each different value is assigned
a group. The main value can either have no group, or the :DEFAULT group. A value can be omitted if
it is the same as the default as listed in USE_GITHUB Description.

GH_TUPLE can also be used when there are a lot of distribution files. It helps keep the account,
project, tagname, and group information at the same place.

For each group, a ${WRKSRC_group} helper variable is created, containing the directory into which
the file has been extracted. The ${WRKSRC_group} variables can be used to move directories around
during post-extract, or add to CONFIGURE_ARGS, or whatever is needed so that the software builds
correctly.

o The :group part must be used for only one distribution file. It is used as a unique
key and using it more than once will overwrite the previous values.

As this is only syntactic sugar above DISTFILES and MASTER_SITES, the group names
o must adhere to the restrictions on group names outlined in Multiple Distribution
or Patches Files from Multiple Locations

When fetching multiple files from GitHub, sometimes the default distribution file is not fetched
from GitHub. To disable fetching the default distribution, set:

USE_GITHUB= nodefault

When using USE_GITHUB=nodefault, the Makefile must set DISTFILES in its top block.
The definition should be:

DISTFILES= ${DISTNAME }${EXTRACT _SUFX}

50

../porting-order/index.html#porting-order-portname

{51l 18. Use of USE_GITHUB with Multiple Distribution Files

From time to time, there is a need to fetch more than one distribution file. For example, when
the upstream git repository uses submodules. This can be done easily using groups in the GH_*
variables:

PORTNAME= foo
DISTVERSION= 1.0.2

USE_GITHUB= yes

GH_ACCOUNT= bar:icons,contrib

GH_PROJECT= foo-icons:icons foo-contrib:contrib
GH_TAGNAME= 1.0:icons fah79bc:contrib
GH_SUBDIR= ext/icons:icons

CONFIGURE_ARGS= --with-contrib=${WRKSRC contrib}

This will fetch three distribution files from github. The default one comes from foo/foo and is
version 1.0.2. The second one, with the icons group, comes from bar/foo-icons and is in
version 1.0. The third one comes from bar/foo-contrib and uses the Git commit fa579bc. The
distribution files are named foo-foo-1.0.2_GHO0.tar.gz, bar-foo-icons-1.0_GHO.tar.gz, and bar-foo-
contrib-fa579bc_GHO.tar.gz.

All the distribution files are extracted in ${WRKDIR} in their respective subdirectories. The
default file is still extracted in ${WRKSRC}, in this case, ${WRKDIR}/foo-1.0.2. Each additional
distribution file is extracted in ${WRKSRC_group}. Here, for the icons group, it is called
${WRKSRC_icons} and it contains ${WRKDIR}/foo-icons-1.0. The file with the contrib group is
called ${WRKSRC_contrib} and contains ${WRKDIR}/foo-contrib-fa579bc.

The software’s build system expects to find the icons in a ext/icons subdirectory in its sources,
so GH_SUBDIR is used. GH_SUBDIR makes sure that ext exists, but that ext/icons does not already
exist. Then it does this:

post-extract:
@${MV} ${WRKSRC_ icons} ${WRKSRC}/ext/icons

31

{5l 19. Use of USE_GITHUB with Multiple Distribution Files Using GH_TUPLE

This is functionally equivalent to Use of USE_GITHUB with Multiple Distribution Files, but using
GH_TUPLE:

PORTNAME= foo
DISTVERSION= 1.0.2

USE_GITHUB= yes
GH TUPLE= bar:foo-icons:1.0:1icons/ext/icons \

bar:foo-contrib:fa579bc:contrib

CONFIGURE _ARGS= --with-contrib=${WRKSRC contrib}

Grouping was used in the previous example with bar:icons,contrib. Some redundant
information is present with GH_TUPLE because grouping is not possible.

32

{5 20. How to Use USE_GITHUB with Git Submodules?

Ports with GitHub as an upstream repository sometimes use submodules. See git-submodule(1)
for more information.

The problem with submodules is that each is a separate repository. As such, they each must be
fetched separately.

Using finance/moneymanagerex as an example, its GitHub repository is https://github.com/
moneymanagerex/moneymanagerex. It has a .gitmodules file at the root. This file describes all
the submodules used in this repository, and lists additional repositories needed. This file will
tell what additional repositories are needed:

[submodule "lib/wxsqlite3"]

path = lib/wxsqlite3

url = https://github.com/utelle/wxsqlite3.qgit
[submodule "3rd/mongoose"]

path = 3rd/mongoose

url = https://github.com/cesanta/mongoose.qgit
[submodule "3rd/LuaGlue"]

path = 3rd/LuaGlue

url = https://github.com/moneymanagerex/LuaGlue.qgit
[submodule "3rd/cgitemplate”]

path = 3rd/cqitemplate

url = https://github.com/moneymanagerex/html-template.git
[...]

The only information missing from that file is the commit hash or tag to use as a version. This
information is found after cloning the repository:

33

https://www.freebsd.org/cgi/man.cgi?query=git-submodule&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/finance/moneymanagerex/pkg-descr
https://github.com/moneymanagerex/moneymanagerex
https://github.com/moneymanagerex/moneymanagerex
https://github.com/moneymanagerex/moneymanagerex/blob/master/.gitmodules

% git clone --recurse-submodules
https://qgithub.com/moneymanagerex/moneymanagerex.git

Cloning into 'moneymanagerex'...

remote: Counting objects: 32387, done.

[...]

Submodule '3rd/LuaGlue’ (https://github.com/moneymanagerex/LuaGlue.git) registered
for path '3rd/LuaGlue’

Submodule '3rd/cgitemplate’ (https://github.com/moneymanagerex/html-template.qgit)
registered for path '3rd/cqitemplate’

Submodule '3rd/mongoose' (https://github.com/cesanta/mongoose.qgit) registered for
path '3rd/mongoose’

Submodule 'lib/wxsqlite3' (https://github.com/utelle/wxsqlite3.qit) registered for
path 'lib/wxsqlite3’

[...]

Cloning into
"/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/LuaGlue’..

Cloning into
'/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/cgitemplat
e'...

Cloning into

"/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/mongoose".

Cloning into
'/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/lib/wxsqlite3’
[...]

Submodule path '3rd/LuaGlue': checked out
'c51d11a247ee4d1e9817dfa2a8da8d9e2f97ae3b"

Submodule path '3rd/cgitemplate’: checked out
'cd434eeeb35904ebcd3d718ba29¢281a649b192c¢"

Submodule path '3rd/mongoose’: checked out
'2140e5992ab9a3a9%9a34ce9a281abf57f00f95cda’

Submodule path 'lib/wxsqlite3': checked out
'fbbbeb230d8aed21dec273b38c7¢c054dcb7d6b51"

.

% cd moneymanagerex

% git submodule status

c51d11a247ee4d1e9817dfa2a8da8d9e2f97ae3b 3rd/LuaGlue (heads/master)
cd434eeeb35904ebcd3d718ba29¢c281a649b192¢ 3rd/cgitemplate (cd434ee)
2140e5992ab9a339%34ce9a281abf57f00f95¢cda 3rd/mongoose (6.2-138-92140e59)
fb66eb230d8aed21dec273b38c7c054dcb7d6b51 1ib/wxsqlite3 (v3.4.0)

[...]

Lo |

It can also be found on GitHub. Each subdirectory that is a submodule is shown as directory @
hash, for example, mongoose @ 2140e59.

While getting the information from GitHub seems more straightforward, the
information found wusing git submodule status will provide more meaningful
information. For example, here, lib/wxsqlite3's commit hash fb66eb2 correspond to
v3.4.0. Both can be used interchangeably, but when a tag is available, use it.

Now that all the required information has been gathered, the Makefile can be written (only
GitHub-related lines are shown):

PORTNAME= moneymanagerex
DISTVERSIONPREFIX= v
DISTVERSION= 1.3.0

USE_GITHUB= yes

GH_TUPLE= utelle:wxsqlite3:v3.4.0:wxsqlite3/1ib/wxsqlite3 \
moneymanagerex:LuaGlue:c51d11a:1ua_glue/3rd/LuaGlue \
moneymanagerex:html-template:cd434ee:html_template/3rd/cgitemplate \
cesanta:mongoose:2140e59:mongoose/3rd/mongoose \

[...]

5.4.4. USE_GITLAB

Similar to GitHub, if the distribution file comes from gitlab.com or is hosting the GitLab software,
these variables are available for use and might need to be set.

2 6. USE_GITLAB Description

Variable Description Default
GL_SITE Site name hosting the GitLab https://gitlab.com
project
GL_ACCOUNT Account name of the GitLab ${PORTNAME}
user hosting the project
GL_PROJECT Name of the project on GitLab ${PORTNAME}
GL_COMMIT The commit hash to download. (none)

Must be the full 160 bit, 40
character hex shal hash. This is
a required variable for GitLab.

GL_SUBDIR When the software needs an (none)
additional distribution file to be
extracted within ${WRKSRC}, this
variable can be used. See the
examples in Fetching Multiple
Files from GitLab for more
information.

55

https://gitlab.com
https://gitlab.com

{5 21. Simple Use of USE_GITLAB

While trying to make a port for version 1.14 of libsignon-glib from the accounts-sso user on
gitlab.com, at https://gitlab.com/accounts-sso/libsignon-glib, The Makefile would end up
looking like this for fetching the distribution files:

PORTNAME= 1libsignon-glib
DISTVERSION= 1.14

USE_GITLAB= yes
GL_ACCOUNT= accounts-sso
GL_COMMIT= e90302e342bfd27bc8c9132ab9d0ea3d87231d03

It will automatically have MASTER_SITES set to gitlab.com and WRKSRC to ${WRKDIR}/1libsignon-
glib-e90302e342bfd27bc8c9132ab9d0ea3d8723fd03-e90302e342bfd27bc8c9132ab9d@ea3d8723de3.

{5 22. More Complete Use of USE_GITLAB

A more complete use of the above if port had no versioning and foobar from the foo user on
project bar on a self hosted GitLab site https://gitlab.example.com, the Makefile ends up
looking like this for fetching distribution files:

PORTNAME= foobar
DISTVERSION= 920170906

USE_GITLAB= yes

GL_SITE= https://qgitlab.example.com

GL_ACCOUNT= foo

GL_PROJECT= bar

GL_COMMIT= 9c1669ce6@c3f4f5eb43df874d7314483fb3f8ab

It will have MASTER_SITES set to "https://gitlab.example.com" and WRKSRC to ${WRKDIR}/bar-
9c1669ceb60c3f4f5eb43df874d7314483fb3f8ab-9c1669ceb0c3f4f5eb43df874d7314483fb318ab.

O 20170906 is the date of the commit referenced in GL_COMMIT, not the date the
- Makefile is edited, or the date the commit to the FreeBSD ports tree is made.
e GL_SITE's protocol, port and webroot can all be modified in the same variable.

5.4.4.1. Fetching Multiple Files from GitLab

The USE_GITLAB framework also supports fetching multiple distribution files from different places
from GitLab and GitLab hosted sites. It works in a way very similar to Multiple Distribution or
Patches Files from Multiple Locations and Fetching Multiple Files from GitLab.

36

https://gitlab.com/accounts-sso/libsignon-glib
https://gitlab.com
https://gitlab.example.com

Multiple values are added to GL_SITE, GL_ACCOUNT, GL_PROJECT and GL_COMMIT. Each different value is
assigned a group. USE_GITLAB Description.

GL_TUPLE can also be used when there are a lot of distribution files. It helps keep the site, account,
project, commit, and group information at the same place.

For each group, a ${WRKSRC_group} helper variable is created, containing the directory into which
the file has been extracted. The ${WRKSRC_group} variables can be used to move directories around
during post-extract, or add to CONFIGURE_ARGS, or whatever is needed so that the software builds
correctly.

° The :group part must be used for only one distribution file. It is used as a unique
key and using it more than once will overwrite the previous values.

As this is only syntactic sugar above DISTFILES and MASTER_SITES, the group names
o must adhere to the restrictions on group names outlined in Multiple Distribution
or Patches Files from Multiple Locations

When fetching multiple files using GitLab, sometimes the default distribution file is not fetched
from a GitLab site. To disable fetching the default distribution, set:

USE_GITLAB= nodefault

When using USE_GITLAB=nodefault, the Makefile must set DISTFILES in its top block.
The definition should be:

DISTFILES= ${DISTNAME }${EXTRACT _SUFX}

57

el

38

23. Use of USE_GITLAB with Multiple Distribution Files

From time to time, there is a need to fetch more than one distribution file. For example, when
the upstream git repository uses submodules. This can be done easily using groups in the GL_*
variables:

PORTNAME= foo
DISTVERSION= 1.0.2

USE_GITLAB= yes

GL_SITE= https://qgitlab.example.com:9434/gitlab:icons
GL_ACCOUNT= bar:icons,contrib

GL_PROJECT= foo-icons:icons foo-contrib:contrib
GL_COMMIT= ¢189207a55da45305c884fe2b50e086fcad4724b
ae7368cab1ca7ca754b38d49dad64df87968ffed:icons
9e4dd76ad9b38f33fdb41734c01935958d5acd2a: contrib
GL_SUBDIR= ext/icons:icons

CONFIGURE_ARGS= --with-contrib=§{WRKSRC_contrib}

This will fetch two distribution files from gitlab.com and one from gitlab.example.com hosting
GitLab. The default one comes from https:/gitlab.com/foo/foo and commit is
c189207355da45305c884fe2b50e086fcad4724b. The second one, with the icons group, comes from
https://gitlab.example.com:9434/gitlab/bar/foo-icons and commit is
ae7368cablca7ca’54b38d49da064df87968ffe4. The third one comes from https://gitlab.com/bar/
foo-contrib and is commit 9e4dd76ad9b38f33fdb417a4c01935958d5acd2a. The distribution files are
named foo-foo-c189207a55da45305c884fe2b50e086fcad4724b_GLO.tar.gz, bar-foo-icons-
ae7368cablca7ca754b38d49da064df87968ffe4_GLO.tar.gz, and bar-foo-contrib-
9e4dd76ad9b38f33fdb417a4c01935958d5acd2a_GLO.tar.gz.

All the distribution files are extracted in ${WRKDIR} in their respective subdirectories. The
default file is still extracted in ${WRKSRC}, in this case, ${WRKDIR}/foo-
c189207a55da45305c884fe2b50e086fcad4724b-c189207a55da45305c884fe2b50e086fcad4724b.
Each additional distribution file is extracted in ${WRKSRC_group}. Here, for the icons group, it is
called ${WRKSRC_icons} and it contains ${WRKDIR}/foo-icons-
ae7368cablca7ca754b38d49da064df87968ffe4-ae7368cablca7ca754b38d49da064df87968ffe4.
The file with the contrib group is called ${WRKSRC_contrib} and contains ${WRKDIR}/foo-contrib-
9e4dd76ad9b38f33fdb417a4c01935958d5acd2a-9e4dd76ad9b38f33fdb417a4c01935958d5acd?a.

The software’s build system expects to find the icons in a ext/icons subdirectory in its sources,
so GL_SUBDIR is used. GL_SUBDIR makes sure that ext exists, but that ext/icons does not already
exist. Then it does this:

post-extract:
@${MV} ${WRKSRC icons} ${WRKSRC}/ext/icons

https://gitlab.com/foo/foo
https://gitlab.example.com:9434/gitlab/bar/foo-icons
https://gitlab.com/bar/foo-contrib
https://gitlab.com/bar/foo-contrib

{5l 24. Use of USE_GITLAB with Multiple Distribution Files Using GL_TUPLE

This is functionally equivalent to Use of USE_GITLAB with Multiple Distribution Files, but using
GL_TUPLE:

PORTNAME= foo
DISTVERSION= 1.0.2

USE_GITLAB= yes

GL_COMMIT= ¢189207a55da45305c884fe2b50e086fcad4724b

GL_TUPLE= https://gitlab.example.com:9434/gitlab:bar:foo-

icons:ae7368cablca7ca754b38d49da064df87968ffed:icons/ext/icons \
bar:foo-contrib:9e4dd76ad9b38f33fdb417a4c01935958d5acd2a:contrib

CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib}

Grouping was used in the previous example with bar:icons,contrib. Some redundant
information is present with GL_TUPLE because grouping is not possible.

5.4.5. EXTRACT _SUFX

If there is one distribution file, and it uses an odd suffix to indicate the compression mechanism, set
EXTRACT _SUFX.

For example, if the distribution file was named foo.tar.gzip instead of the more normal foo.tar.gz,
write:

DISTNAME= foo
EXTRACT_SUFX= .tar.gzip

The USES=tar[:xxx], USES=lha or USES=zip automatically set EXTRACT_SUFX to the most common
archives extensions as necessary, see Using USES Macros for more details. If neither of these are set
then EXTRACT_SUFX defaults to .tar.qgz.

o As EXTRACT_SUFX is only used in DISTFILES, only set one of them..

5.4.6. DISTFILES

Sometimes the names of the files to be downloaded have no resemblance to the name of the port.
For example, it might be called source.tar.gz or similar. In other cases the application’s source code
might be in several different archives, all of which must be downloaded.

If this is the case, set DISTFILES to be a space separated list of all the files that must be downloaded.

DISTFILES= sourcel.tar.gz source2.tar.gz

39

../uses/index.html#uses
../uses/index.html#uses
../uses/index.html#uses

If not explicitly set, DISTFILES defaults to ${DISTNAME}${EXTRACT _SUFX}.

5.4.7. EXTRACT_ONLY
If only some of the DISTFILES must be extracted-for example, one of them is the source code, while

another is an uncompressed document-list the filenames that must be extracted in EXTRACT_ONLY.

DISTFILES= source.tar.gz manual.html
EXTRACT_ONLY= source.tar.gz

When none of the DISTFILES need to be uncompressed, set EXTRACT_ONLY to the empty string.

EXTRACT _ONLY=

5.4.8. PATCHFILES

If the port requires some additional patches that are available by FTP or HTTP, set PATCHFILES to the
names of the files and PATCH_SITES to the URL of the directory that contains them (the format is the
same as MASTER_SITES).

If the patch is not relative to the top of the source tree (that is, WRKSRC) because it contains some
extra pathnames, set PATCH_DIST_STRIP accordingly. For instance, if all the pathnames in the patch
have an extra foozolix-1.0/ in front of the filenames, then set PATCH_DIST_STRIP=-pT.

Do not worry if the patches are compressed; they will be decompressed automatically if the
filenames end with .Z, .gz, .bz2 or .xz.

If the patch is distributed with some other files, such as documentation, in a compressed tarball,
using PATCHFILES is not possible. If that is the case, add the name and the location of the patch
tarball to DISTFILES and MASTER_SITES. Then, use EXTRA_PATCHES to point to those files and
bsd.port.mk will automatically apply them. In particular, do not copy patch files into ${PATCHDIR}.
That directory may not be writable.

If there are multiple patches and they need mixed values for the strip parameter, it
can be added alongside the patch name in PATCHFILES, e.g:

PATCHFILES= patch1 patch2:-p1

This does not conflict with the master site grouping feature, adding a group also
works:

PATCHFILES= patch2:-p1:source2

60

The tarball will have been extracted alongside the regular source by then, so there
is no need to explicitly extract it if it is a regular compressed tarball. Take extra

o care not to overwrite something that already exists in that directory if extracting it
manually. Also, do not forget to add a command to remove the copied patch in the
pre-clean target.

5.4.9. Multiple Distribution or Patches Files from Multiple Locations

(Consider this to be a somewhat "advanced topic"; those new to this document may wish to skip this
section at first).

This section has information on the fetching mechanism known as both MASTER_SITES:n and
MASTER_SITES_NN. We will refer to this mechanism as MASTER_SITES:n.

A little background first. OpenBSD has a neat feature inside DISTFILES and PATCHFILES which allows
files and patches to be postfixed with :n identifiers. Here, n can be any word containing [0-9a-zA-
Z_] and denote a group designation. For example:

DISTFILES= alpha:@ beta:1

In OpenBSD, distribution file alpha will be associated with variable MASTER_SITES@ instead of our
common MASTER_SITES and beta with MASTER _SITEST.

This is a very interesting feature which can decrease that endless search for the correct download
site.

Just picture 2 files in DISTFILES and 20 sites in MASTER_SITES, the sites slow as hell where beta is
carried by all sites in MASTER_SITES, and alpha can only be found in the 20th site. It would be such a
waste to check all of them if the maintainer knew this beforehand, would it not? Not a good start
for that lovely weekend!

Now that you have the idea, just imagine more DISTFILES and more MASTER_SITES. Surely our
"distfiles survey meister" would appreciate the relief to network strain that this would bring.

In the next sections, information will follow on the FreeBSD implementation of this idea. We
improved a bit on OpenBSD’s concept.

The group names cannot have dashes in them (-), in fact, they cannot have any
o characters out of the [a-zA-70-9_] range. This is because, while make(1) is ok with
variable names containing dashes, sh(1) is not.

5.4.9.1. Simplified Information

This section explains how to quickly prepare fine grained fetching of multiple distribution files and
patches from different sites and subdirectories. We describe here a case of simplified
MASTER_SITES:n usage. This will be sufficient for most scenarios. More detailed information are
available in Detailed Information.

61

https://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sh&sektion=1&format=html

Some applications consist of multiple distribution files that must be downloaded from a number of
different sites. For example, Ghostscript consists of the core of the program, and then a large
number of driver files that are used depending on the user’s printer. Some of these driver files are
supplied with the core, but many others must be downloaded from a variety of different sites.

To support this, each entry in DISTFILES may be followed by a colon and a "group name". Each site
listed in MASTER_SITES is then followed by a colon, and the group that indicates which distribution
files are downloaded from this site.

For example, consider an application with the source split in two parts, sourcel.tar.gz and
source2.tar.gz, which must be downloaded from two different sites. The port’s Makefile would
include lines like Simplified Use of MASTER_SITES:n with One File Per Site.

{5 25. Simplified Use of MASTER_SITES:n with One File Per Site

MASTER_SITES= ftp://ftpl.example.com/:sourcel \
http://www.example.com/:source2

DISTFILES= sourcel.tar.gz:sourcel \
source?.tar.gz:source?

Multiple distribution files can have the same group. Continuing the previous example, suppose that
there was a third distfile, source3.tar.gz, that is downloaded from ftp.example2.com. The Makefile
would then be written like Simplified Use of MASTER_SITES:n with More Than One File Per Site.

{5l 26. Simplified Use of MASTER_SITES:n with More Than One File Per Site

MASTER_SITES= ftp://ftp.example.com/:sourcel \
http://www.example.com/:source2

DISTFILES= sourcel.tar.gz:sourcel \
source2.tar.gz:source2 \
source3.tar.gz:source2

5.4.9.2. Detailed Information

Okay, so the previous example did not reflect the new port’s needs? In this section we will explain
in detail how the fine grained fetching mechanism MASTER_SITES:n works and how it can be used.

1. Elements can be postfixed with :n where n is [":,]+, that is, n could conceptually be any
alphanumeric string but we will limit it to [a-zA-Z_][0-93-zA-Z_]+ for now.

Moreover, string matching is case sensitive; that is, n is different from N.

However, these words cannot be used for postfixing purposes since they yield special meaning:
default, all and ALL (they are used internally in item ii). Furthermore, DEFAULT is a special
purpose word (check item 3).

62

2. Elements postfixed with :n belong to the group n, :m belong to group m and so forth.

3. Elements without a postfix are groupless, they all belong to the special group DEFAULT. Any
elements postfixed with DEFAULT, is just being redundant unless an element belongs to both
DEFAULT and other groups at the same time (check item 5).

These examples are equivalent but the first one is preferred:

MASTER_SITES= alpha

MASTER_SITES= alpha:DEFAULT

4. Groups are not exclusive, an element may belong to several different groups at the same time
and a group can either have either several different elements or none at all.

5. When an element belongs to several groups at the same time, use the comma operator (,).
Instead of repeating it several times, each time with a different postfix, we can list several

groups at once in a single postfix. For instance, :m,n, o0 marks an element that belongs to group m,
nand o.

All these examples are equivalent but the last one is preferred:

MASTER_SITES= alpha alpha:SOME_SITE

MASTER_SITES= alpha:DEFAULT alpha:SOME_SITE

MASTER_SITES= alpha:SOME_SITE,DEFAULT

MASTER_SITES= alpha:DEFAULT,SOME_SITE

6. All sites within a given group are sorted according to MASTER_SORT_AWK. All groups within
MASTER_SITES and PATCH_SITES are sorted as well.

7. Group semantics can be wused in any of the wvariables MASTER_SITES, PATCH_SITES,
MASTER_SITE_SUBDIR, PATCH_SITE_SUBDIR, DISTFILES, and PATCHFILES according to this syntax:

a. All MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR elements must be
terminated with the forward slash / character. If any elements belong to any groups, the
group postfix :n must come right after the terminator /. The MASTER_SITES:n mechanism
relies on the existence of the terminator / to avoid confusing elements where a :n is a valid
part of the element with occurrences where :n denotes group n. For compatibility purposes,
since the / terminator was not required before in both MASTER_SITE_SUBDIR and
PATCH_SITE_SUBDIR elements, if the postfix immediate preceding character is not a / then :n
will be considered a valid part of the element instead of a group postfix even if an element is

63

64

postfixed with :n. See both Detailed Use of MASTER_SITES:n in MASTER_SITE_SUBDIR and Detailed
Use of MASTER_SITES:n with Comma Operator, Multiple Files, Multiple Sites and Multiple
Subdirectories.

{51 27. Detailed Use of MASTER_SITES:n in MASTER_SITE_SUBDIR

MASTER_SITE_SUBDIR= old:n new/:NEW

» Directories within group DEFAULT - old:n

= Directories within group NEW - new

{5l 28. Detailed Use of MASTER_SITES:n with Comma Operator, Multiple Files, Multiple Sites and
Multiple Subdirectories

MASTER_SITES= http://site1/%SUBDIR%/ http://site2/:DEFAULT \
http://site3/:group3 http://site4/:groupd \
http://site5/:group5 http://siteb/:groupb \
http://site7/:DEFAULT,groupb \
http://site8/%SUBDIR%/:groupb,group7 \
http://site9/:group8

DISTFILES= filel file2:DEFAULT file3:group3 \
filed:group4,group5,groupb file5:grouping \
fileb:group7

MASTER_SITE_SUBDIR= directory-trial:1 directory-n/:groupn \
directory-one/:groupb,DEFAULT \
directory

The previous example results in this fine grained fetching. Sites are listed in the exact
order they will be used.

» file1l will be fetched from

= MASTER_SITE_OVERRIDE

http://site1/directory-trial:1/

http://site1/directory-one/

http://sitel/directory/

http://site2/

http://site7/

MASTER_SITE_BACKUP
= file2 will be fetched exactly as filel since they both belong to the same group
= MASTER_SITE_OVERRIDE

http://site1/directory-trial:1/

http://site1/directory-one/

http://sitel/directory/

http://site2/

http://site7/
= MASTER_SITE_BACKUP

= file3 will be fetched from
= MASTER_SITE_OVERRIDE
= http://site3/
= MASTER_SITE_BACKUP

= file4 will be fetched from

65

http://site1/directory-trial:1/
http://site1/directory-one/
http://site1/directory/
http://site2/
http://site7/
http://site1/directory-trial:1/
http://site1/directory-one/
http://site1/directory/
http://site2/
http://site7/
http://site3/

8.

66

MASTER_SITE_OVERRIDE

http://site4/

http://site5/

http://site6/

http://site7/

http://site8/directory-one/

MASTER_SITE_BACKUP

= file5 will be fetched from
= MASTER_SITE_OVERRIDE
= MASTER_SITE_BACKUP

= file6 will be fetched from
= MASTER_SITE_OVERRIDE
= http://site8/
= MASTER_SITE_BACKUP

How do I group one of the special macros from bsd.sites.mk, for example, SourceForge (SF)?

This has been simplified as much as possible. See Detailed Use of MASTER_SITES:n with
SourceForge (SF).

{5 29. Detailed Use of MASTER_SITES:n with SourceForge (SF)

MASTER_SITES= http://sitel/ SF/something/1.0:sourceforge, TEST
DISTFILES= something.tar.gz:sourceforge

something.tar.gz will be fetched from all sites within SourceForge.

How do I use this with PATCH*?

All examples were done with MASTER* but they work exactly the same for PATCH* ones as can be
seen in Simplified Use of MASTER_SITES:n with PATCH_SITES.

{5 30. Simplified Use of MASTER_SITES:n with PATCH_SITES

PATCH_SITES= http://sitel/ http://site2/:test
PATCHFILES= patchl:test

http://site4/
http://site5/
http://site6/
http://site7/
http://site8/directory-one/
http://site8/

5.4.9.3. What Does Change for Ports? What Does Not?

i. All current ports remain the same. The MASTER_SITES:n feature code is only activated if there are
elements postfixed with :n like elements according to the aforementioned syntax rules,
especially as shown in item 7.

ii. The port targets remain the same: checksum, makesum, patch, confiqure, build, etc. With the
obvious exceptions of do-fetch, fetch-1list, master-sites and patch-sites.

o do-fetch: deploys the new grouping postfixed DISTFILES and PATCHFILES with their matching
group elements within both MASTER_SITES and PATCH_SITES which use matching group
elements within both MASTER_SITE SUBDIR and PATCH_SITE SUBDIR. Check Detailed Use of
MASTER_SITES:n with Comma Operator, Multiple Files, Multiple Sites and Multiple
Subdirectories.

o fetch-list: works like old fetch-1ist with the exception that it groups just like do-fetch.

o master-sites and patch-sites: (incompatible with older versions) only return the elements
of group DEFAULT; in fact, they execute targets master-sites-default and patch-sites-default
respectively.

Furthermore, using target either master-sites-all or patch-sites-all is preferred to directly
checking either MASTER_SITES or PATCH_SITES. Also, directly checking is not guaranteed to
work in any future versions. Check item B for more information on these new port targets.

iii. New port targets

a. There are master-sites-n and patch-sites-n targets which will list the elements of the
respective group n within MASTER_SITES and PATCH_SITES respectively. For instance, both
master-sites-DEFAULT and patch-sites-DEFAULT will return the elements of group DEFAULT,
master-sites-test and patch-sites-test of group test, and thereon.

b. There are new targets master-sites-all and patch-sites-all which do the work of the old
master-sites and patch-sites ones. They return the elements of all groups as if they all
belonged to the same group with the caveat that it lists as many MASTER_SITE_BACKUP and
MASTER_SITE_OVERRIDE as there are groups defined within either DISTFILES or PATCHFILES;
respectively for master-sites-all and patch-sites-all.

5.4.10. DIST_SUBDIR

Do not let the port clutter /usr/ports/distfiles. If the port requires a lot of files to be fetched, or
contains a file that has a name that might conflict with other ports (for example, Makefile), set
DIST_SUBDIR to the name of the port (§${PORTNAME} or ${PKGNAMEPREFIX}${PORTNAME} are fine). This will
change DISTDIR from the default /usr/ports/distfiles to /usr/ports/distfiles/${DIST_SUBDIR}, and in
effect puts everything that is required for the port into that subdirectory.

It will also look at the subdirectory with the same name on the backup master site at
http://distcache.FreeBSD.org (Setting DISTDIR explicitly in Makefile will not accomplish this, so
please use DIST_SUBDIR.)

o This does not affect MASTER_SITES defined in the Makefile.

67

http://distcache.FreeBSD.org

5.5. MAINTAINER

Set your mail-address here. Please. :-)

Only a single address without the comment part is allowed as a MAINTAINER value. The format used is
user@hostname.domain. Please do not include any descriptive text such as a real name in this entry.
That merely confuses the Ports infrastructure and most tools using it.

The maintainer is responsible for keeping the port up to date and making sure that it works
correctly. For a detailed description of the responsibilities of a port maintainer, refer to The
challenge for port maintainers.

A maintainer volunteers to keep a port in good working order. Maintainers have
the primary responsibility for their ports, but not exclusive ownership. Ports exist
for the benefit of the community and, in reality, belong to the community. What
this means is that people other than the maintainer can make changes to a port.
Large changes to the Ports Collection might require changes to many ports. The
FreeBSD Ports Management Team or members of other teams might modify ports
to fix dependency issues or other problems, like a version bump for a shared

o library update.

Some types of fixes have "blanket approval" from the Ports Management Team
<portmgr@FreeBSD.org>, allowing any committer to fix those categories of
problems on any port. These fixes do not need approval from the maintainer.

Blanket approval for most ports applies to fixes like infrastructure changes, or
trivial and tested build and runtime fixes. The current list is available in Ports
section of the Committer’s Guide.

Other changes to the port will be sent to the maintainer for review and approval before being
committed. If the maintainer does not respond to an update request after two weeks (excluding
major public holidays), then that is considered a maintainer timeout, and the update can be made
without explicit maintainer approval. If the maintainer does not respond within three months, or if
there have been three consecutive timeouts, then that maintainer is considered absent without
leave, and all of their ports can be assigned back to the pool. Exceptions to this are anything
maintained by the Ports Management Team <portmgr@FreeBSD.org>, or the Security Officer Team
<security-officer@FreeBSD.org>. No unauthorized commits may ever be made to ports maintained
by those groups.

We reserve the right to modify the maintainer’s submission to better match existing policies and
style of the Ports Collection without explicit blessing from the submitter or the maintainer. Also,
large infrastructural changes can result in a port being modified without the maintainer’s consent.
These kinds of changes will never affect the port’s functionality.

The Ports Management Team <portmgr@FreeBSD.org> reserves the right to revoke or override
anyone’s maintainership for any reason, and the Security Officer Team <security-
officer@FreeBSD.org> reserves the right to revoke or override maintainership for security reasons.

68

https://docs.freebsd.org/zh-tw/articles/contributing/#maintain-port
https://docs.freebsd.org/zh-tw/articles/contributing/#maintain-port
mailto:portmgr@FreeBSD.org
https://docs.freebsd.org/en/articles/committers-guide/#ports-qa-misc-blanket-approval
https://docs.freebsd.org/en/articles/committers-guide/#ports-qa-misc-blanket-approval
mailto:portmgr@FreeBSD.org
mailto:security-officer@FreeBSD.org
mailto:portmgr@FreeBSD.org
mailto:security-officer@FreeBSD.org
mailto:security-officer@FreeBSD.org

5.6. COMMENT

The comment is a one-line description of a port shown by pkg info. Please follow these rules when
composing it:

The COMMENT string should be 70 characters or less.

Do not include the package name or version number of software.

The comment must begin with a capital and end without a period.

Do not start with an indefinite article (that is, A or An).

Capitalize names such as Apache, JavaScript, or Perl.

Use a serial comma for lists of words: "green, red, and blue."

N o ke W h o

Check for spelling errors.

Here is an example:
COMMENT= Cat chasing a mouse all over the screen

The COMMENT variable immediately follows the MAINTAINER variable in the Makefile.

5.7. Licenses

Each port must document the license under which it is available. If it is not an OSI approved license
it must also document any restrictions on redistribution.

5.7.1. LICENSE

A short name for the license or licenses if more than one license apply.

If it is one of the licenses listed in Predefined License List, only LICENSE_FILE and LICENSE_DISTFILES
variables can be set.

If this is a license that has not been defined in the ports framework (see Predefined License List),
the LICENSE_PERMS and LICENSE_NAME must be set, along with either LICENSE_FILE or LICENSE_TEXT.
LICENSE_DISTFILES and LICENSE_GROUPS can also be set, but are not required.

The predefined licenses are shown in Predefined License List. The current list is always available in
Mk/bsd.licenses.db.mk.

69

{5l 31. Simplest Usage, Predefined Licenses
When the README of some software says "This software is under the terms of the GNU Lesser

General Public License as published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version." but does not provide the license file, use this:

LICENSE= LGPL21+

When the software provides the license file, use this:

LICENSE= LGPL21+
LICENSE_FILE= ${WRKSRC}/COPYING

For the predefined licenses, the default permissions are dist-mirror dist-sell pkg-mirror pkg-sell
auto-accept.

% 7. Predefined License List

Short Name Name Group Permissions
AGPLv3 GNU Affero General FSF GPL 0SI (default)
Public License version
3
AGPLV3+ GNU Affero General FSF GPL 0SI (default)

Public License version
3 (or later)

APACHE10 Apache License 1.0 FSF (default)

APACHE11 Apache License 1.1 FSF 0SI (default)

APACHE20 Apache License 2.0 FSF 0SI (default)

ART10 Artistic License version 051 (default)
1.0

ART20 Artistic License version FSF GPL 0SI (default)
2.0

ARTPERL10 Artistic License (perl) 051 (default)
version 1.0

BSD BSD license Generic FSF OSI COPYFREE (default)
Version (deprecated)

BSD2CLAUSE BSD 2-clause FSF 0SI COPYFREE (default)
"Simplified" License

BSD3CLAUSE BSD 3-clause "New" or FSF OSI COPYFREE (default)

"Revised" License

70

Short Name
BSD4CLAUSE

BSL
CC-BY-1.0

CC-BY-2.0

CC-BY-2.5

CC-BY-3.0

CC-BY-4.0

CC-BY-NC-1.0

CC-BY-NC-2.0

CC-BY-NC-2.5

CC-BY-NC-3.0

CC-BY-NC-4.0

CC-BY-NC-ND-1.0

CC-BY-NC-ND-2.0

CC-BY-NC-ND-2.5

Name

BSD 4-clause "Original"”
or "Old" License

Boost Software License

Creative Commons
Attribution 1.0

Creative Commons
Attribution 2.0

Creative Commons
Attribution 2.5

Creative Commons
Attribution 3.0

Creative Commons
Attribution 4.0

Creative Commons
Attribution Non
Commercial 1.0

Creative Commons
Attribution Non
Commercial 2.0

Creative Commons
Attribution Non
Commercial 2.5

Creative Commons
Attribution Non
Commercial 3.0

Creative Commons
Attribution Non
Commercial 4.0

Creative Commons
Attribution Non
Commercial No
Derivatives 1.0

Creative Commons
Attribution Non
Commercial No
Derivatives 2.0

Creative Commons
Attribution Non
Commercial No
Derivatives 2.5

Group
FSF

FSF 0SI COPYFREE

Permissions

(default)

(default)
(default)

(default)

(default)

(default)

(default)

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

71

Short Name
CC-BY-NC-ND-3.0

CC-BY-NC-ND-4.0

CC-BY-NC-SA-1.0

CC-BY-NC-SA-2.0

CC-BY-NC-SA-2.5

CC-BY-NC-SA-3.0

CC-BY-NC-SA-4.0

CC-BY-ND-1.0

CC-BY-ND-2.0

CC-BY-ND-2.5

CC-BY-ND-3.0

72

Name

Creative Commons
Attribution Non
Commercial No
Derivatives 3.0

Creative Commons
Attribution Non
Commercial No
Derivatives 4.0

Creative Commons
Attribution Non
Commercial Share
Alike 1.0

Creative Commons
Attribution Non
Commercial Share
Alike 2.0

Creative Commons
Attribution Non
Commercial Share
Alike 2.5

Creative Commons
Attribution Non
Commercial Share
Alike 3.0

Creative Commons
Attribution Non
Commercial Share
Alike 4.0

Creative Commons
Attribution No
Derivatives 1.0

Creative Commons
Attribution No
Derivatives 2.0

Creative Commons
Attribution No
Derivatives 2.5

Creative Commons
Attribution No
Derivatives 3.0

Group

Permissions

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

dist-mirrorpkg-
mirrorauto-accept

(default)

(default)

(default)

(default)

Short Name
CC-BY-ND-4.0

CC-BY-SA-1.0

CC-BY-SA-2.0

CC-BY-SA-2.5

CC-BY-SA-3.0

CC-BY-SA-4.0

CCo-1.0

CDDL

CPAL-1.0

ClArtistic

EPL
GFDL

GMGPL

GPLV1

GPLv1+

GPLv2

Name

Creative Commons
Attribution No
Derivatives 4.0

Creative Commons
Attribution Share Alike
1.0

Creative Commons
Attribution Share Alike
2.0

Creative Commons
Attribution Share Alike
2.5

Creative Commons
Attribution Share Alike
3.0

Creative Commons
Attribution Share Alike
4.0

Creative Commons
Zero v1.0 Universal

Common Development
and Distribution
License

Common Public
Attribution License

Clarified Artistic
License

Eclipse Public License

GNU Free
Documentation License

GNAT Modified General
Public License

GNU General Public
License version 1

GNU General Public
License version 1 (or
later)

GNU General Public
License version 2

Group

FSF

FSF

FSF

FSF

FSF
FSF

FSF

FSF

FSF

FSF

GPL COPYFREE

0SI

0SI

GPL

0SI

GPL

GPL

GPL

GPL

0SI

0SI

0SI

0SI

0SI

Permissions

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)
(default)

(default)

(default)

(default)

(default)

73

Short Name
GPLv2+

GPLv3

GPLv3+

GPLV3RLE

GPLv3RLE+

ISCL

LGPL20

LGPL20+

LGPL21

LGPL21+

LGPL3

LGPL3+

LPPL10

LPPL11

LPPL12

74

Name

GNU General Public
License version 2 (or
later)

GNU General Public
License version 3

GNU General Public
License version 3 (or
later)

GNU GPL version 3
Runtime Library
Exception

GNU GPL version 3
Runtime Library
Exception (or later)

Internet Systems
Consortium License

GNU Library General
Public License version
2.0

GNU Library General
Public License version
2.0 (or later)

GNU Lesser General
Public License version
2.1

GNU Lesser General
Public License version
2.1 (or later)

GNU Lesser General
Public License version
3

GNU Lesser General
Public License version
3 (or later)

LaTeX Project Public
License version 1.0

LaTeX Project Public
License version 1.1

LaTeX Project Public
License version 1.2

Group
FSF GPL 0SI

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

FSF

GPL

GPL

GPL

GPL

GPL

GPL

GPL

GPL

GPL

GPL

GPL

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

0SI

COPYFREE

Permissions

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

(default)

dist-mirror dist-sell

dist-mirror dist-sell

dist-mirror dist-sell

Short Name
LPPL13

LPPL13a

LPPL13b

LPPL13c

MIT

MPL10

MPL11

MPL20

NCSA

NONE
OFL10

OFLM

owL

OpenSSL
PD
PHP202

PHP30
PHP301

PSFL

Name

LaTeX Project Public
License version 1.3

LaTeX Project Public
License version 1.3a

LaTeX Project Public
License version 1.3b

LaTeX Project Public
License version 1.3c

MIT license / X11
license

Mozilla Public License
version 1.0

Mozilla Public License
version 1.1

Mozilla Public License
version 2.0

University of
Ilinois/NCSA Open
Source License

No license specified

SIL Open Font License
version 1.0
(http://scripts.sil.org/
OFL)

SIL Open Font License
version 1.1
(http://scripts.sil.org/
OFL)

Open Works License
(owl.apotheon.org)

OpenSSL License
Public Domain

PHP License version
2.02

PHP License version 3.0

PHP License version
3.01

Python Software
Foundation License

Group
FSF 0SI

FSF 0SI

FSF 0SI

FSF 0SI

COPYFREE FSF GPL 0SI

FSF 0SI

FSF 0SI

FSF 0SI

COPYFREE FSF GPL 0SI

FONTS

FONTS

COPYFREE

FSF
GPL COPYFREE
FSF 0SI

FSF 0SI
FSF 0SI

FSF GPL 0SI

Permissions

dist-mirror dist-sell

dist-mirror dist-sell

dist-mirror dist-sell

dist-mirror dist-sell

(default)

(default)

(default)

(default)

(default)

none

(default)

(default)

(default)

(default)
(default)
(default)

(default)
(default)

(default)

75

http://scripts.sil.org/OFL
http://scripts.sil.org/OFL
http://scripts.sil.org/OFL
http://scripts.sil.org/OFL

Short Name Name Group Permissions

PostgreSQL PostgreSQL License FSF GPL OSI COPYFREE (default)
RUBY Ruby License FSF (default)
WTFPL Do What the Fuck You 6PL FSF COPYFREE (default)
Want To Public License
version 2
WTFPL1 Do What the Fuck You GPL FSF COPYFREE (default)
Want To Public License
version 1
ZLIB zlib License GPL FSF 0SI (default)
ZPL2 Zope Public License GPL 0SI (default)
version 2.1

5.7.2. LICENSE_PERMS and LICENSE_PERMS_NAME _
Permissions. use none if empty.

License Permissions List
dist-mirror

Redistribution of the distribution files is permitted. The distribution files will be added to the
FreeBSD MASTER_SITE_BACKUP CDN.

no-dist-mirror
Redistribution of the distribution files is prohibited. This is equivalent to setting RESTRICTED. The
distribution files will not be added to the FreeBSD MASTER _SITE BACKUP CDN.

dist-sell

Selling of distribution files is permitted. The distribution files will be present on the installer
images.

no-dist-sell

Selling of distribution files is prohibited. This is equivalent to setting NO_CDROM.

pkg-mirror
Free redistribution of package is permitted. The package will be distributed on the FreeBSD
package CDN https://pkg.freebsd.org/.

no-pkg-mirror
Free redistribution of package is prohibited. Equivalent to setting NO_PACKAGE. The package will
not be distributed from the FreeBSD package CDN https://pkg.freebsd.org/.

pkg-sell

Selling of package is permitted. The package will be present on the installer images.

76

../special/index.html#porting-restrictions-restricted
../special/index.html#porting-restrictions-no_cdrom
https://pkg.freebsd.org/
../special/index.html#porting-restrictions-no_package
https://pkg.freebsd.org/

no-pkg-sell
Selling of package is prohibited. This is equivalent to setting NO_CDROM. The package will not be
present on the installer images.

auto-accept

License is accepted by default. Prompts to accept a license are not displayed unless the user has
defined LICENSES_ASK. Use this unless the license states the user must accept the terms of the
license.

no-auto-accept

License is not accepted by default. The user will always be asked to confirm the acceptance of
this license. This must be used if the license states that the user must accept its terms.

When both permission and no-permission is present the no-permission will cancel permission.

When permission is not present, it is considered to be a no-permission.

Some missing permissions will prevent a port (and all ports depending on it) from
being usable by package users:

a A port without the auto-accept permission will never be be built and all the ports
depending on it will be ignored.

A port without the pkg-mirror permission will be removed, as well as all the ports
depending on it, after the build and they will ever end up being distributed.

{5 32. Nonstandard License

Read the terms of the license and translate those using the available permissions.

LICENSE= UNKNOWN
LICENSE_NAME= unknown
LICENSE_TEXT= This program is NOT in public domain.\
It can be freely distributed for non-commercial purposes only.
LICENSE_PERMS= dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept

77

../special/index.html#porting-restrictions-no_cdrom

5 33. Standard and Nonstandard Licenses

Read the terms of the license and express those using the available permissions. In case of
doubt, please ask for guidance on the FreeBSD ports #FHIE.

LICENSE= WARSOW GPLv2

LICENSE_COMB= multi

LICENSE_NAME WARSOW= Warsow Content License
LICENSE_FILE_WARSOW= ${WRKSRC}/docs/license.txt
LICENSE_PERMS_WARSOW= dist-mirror pkg-mirror auto-accept

When the permissions of the GPLv2 and the UNKNOWN licenses are mixed, the port ends up
with dist-mirror dist-sell pkg-mirror pkg-sell auto-accept dist-mirror no-dist-sell pkg-
mirror no-pkg-sell auto-accept. The no-permissions cancel the permissions. The resulting list of
permissions are dist-mirror pkg-mirror auto-accept. The distribution files and the packages will
not be available on the installer images.

5.7.3. LICENSE_GROUPS and LICENSE_GROUPS_NAME
Groups the license belongs.

Predefined License Groups List
FSF

Free Software Foundation Approved, see the FSF Licensing & Compliance Team.

GPL
GPL Compatible

0SI

OSI Approved, see the Open Source Initiative Open Source Licenses page.

COPYFREE
Comply with Copyfree Standard Definition, see the Copyfree Licenses page.

FONTS

Font licenses

5.7.4. LICENSE_NAME and LICENSE_NAME_NAME

Full name of the license.

78

https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
http://www.fsf.org/licensing
http://opensource.org/licenses
http://copyfree.org/standard/licenses

{5l 34. LICENSE_NAME

LICENSE= UNRAR

LICENSE_NAME= UnRAR License

LICENSE FILE= ${WRKSRC}/license.txt

LICENSE_PERMS= dist-mirror dist-sell pkg-mirror pkg-sell auto-accept

5.7.5. LICENSE_FILE and LICENSE_FILE_NAME

Full path to the file containing the license text, usually ${WRKSRC}/some/file. If the file is not in the
distfile, and its content is too long to be put in LICENSE_TEXT, put it in a new file in ${FILESDIR}.

{5l 35. LICENSE_FILE

LICENSE= GPLv3+
LICENSE_FILE= ${WRKSRC}/COPYING

5.7.6. LICENSE_TEXT and LICENSE_TEXT_NAME

Text to use as a license. Useful when the license is not in the distribution files and its text is short.

{5l 36. LICENSE_TEXT

LICENSE= UNKNOWN

LICENSE_NAME= unknown

LICENSE_TEXT= This program is NOT in public domain.\
It can be freely distributed for non-commercial purposes only,\
and THERE IS NO WARRANTY FOR THIS PROGRAM.

LICENSE_PERMS= dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept

5.7.7. LICENSE_DISTFILES and LICENSE_DISTFILES_NAME

The distribution files to which the licenses apply. Defaults to all the distribution files.

79

{5l 37. LICENSE_DISTFILES

Used when the distribution files do not all have the same license. For example, one has a code
license, and another has some artwork that cannot be redistributed:

MASTER_SITES= SF/some-game

DISTFILES= ${DISTNAME}${EXTRACT_SUFX} artwork.zip

LICENSE= BSD3CLAUSE ARTWORK

LICENSE_COMB= dual

LICENSE _NAME _ARTWORK= The game artwork license

LICENSE_TEXT_ARTWORK= The README says that the files cannot be redistributed
LICENSE_PERMS_ARTWORK= pkg-mirror pkg-sell auto-accept

LICENSE_DISTFILES_BSD3CLAUSE= ${DISTNAME}${EXTRACT_SUFX}
LICENSE_DISTFILES_ARTWORK= artwork.zip

5.7.8. LICENSE_COMB

Set to multi if all licenses apply. Set to dual if any license applies. Defaults to single.

{5 38. Dual Licenses

When a port says "This software may be distributed under the GNU General Public License or
the Artistic License", it means that either license can be used. Use this:

LICENSE= ART10 GPLv1
LICENSE_COMB= dual

If license files are provided, use this:

LICENSE= ART10 GPLv1

LICENSE_COMB= dual

LICENSE_FILE_ART10= ${WRKSRC}/Artistic
LICENSE_FILE_GPLv1= ${WRKSRC}/Copying

{5l 39. Multiple Licenses

When part of a port has one license, and another part has a different license, use multi:

LICENSE= GPLv2 LGPL21+
LICENSE_COMB= multi

80

5.8. PORTSCOUT

Portscout is an automated distfile check utility for the FreeBSD Ports Collection, described in detail
in Portscout: the FreeBSD Ports Distfile Scanner.

PORTSCOUT defines special conditions within which the Portscout distfile scanner is restricted.
Situations where PORTSCOUT is set include:

* When distfiles have to be ignored for specific versions. For example, to exclude version 8.2 and
version 8.3 from distfile version checks because they are known to be broken, add:

PORTSCOUT= skipv:8.2,8.3

* When distfile version checks have to be disabled completely. For example, if a port is not going
to be updated ever again, add:

PORTSCOUT= ignore:1

* When specific versions or specific major and minor revisions of a distfile must be checked. For
example, if only version 0.6.4 must be monitored because newer versions have compatibility
issues with FreeBSD, add:

PORTSCOUT=T1imit:"0\.6\.4

* When URLs listing the available versions differ from the download URLs. For example, to limit
distfile version checks to the download page for the databases/pgtune port, add:

PORTSCOUT= site:http://pgfoundry.org/frs/?group_id=1000416

5.9. Dependencies

Many ports depend on other ports. This is a very convenient feature of most Unix-like operating
systems, including FreeBSD. Multiple ports can share a common dependency, rather than bundling
that dependency with every port or package that needs it. There are seven variables that can be
used to ensure that all the required bits will be on the user’s machine. There are also some pre-
supported dependency variables for common cases, plus a few more to control the behavior of
dependencies.

81

../keeping-up/index.html#distfile-survey
https://cgit.freebsd.org/ports/tree/databases/pgtune/pkg-descr

When software has extra dependencies that provide extra features, the base
dependencies listed in *_DEPENDS should include the extra dependencies that would

o benefit most users. The base dependencies should never be a "minimal"
dependency set. The goal is not to include every dependency possible. Only include
those that will benefit most people.

5.9.1. LIB_DEPENDS

This variable specifies the shared libraries this port depends on. It is a list of 1ib:dir tuples where
1ib is the name of the shared library, dir is the directory in which to find it in case it is not
available. For example,

LIB_DEPENDS= 1libjpeg.so:graphics/jpeg

will check for a shared jpeg library with any version, and descend into the graphics/jpeg
subdirectory of the ports tree to build and install it if it is not found.

The dependency is checked twice, once from within the build target and then from within the
install target. Also, the name of the dependency is put into the package so that pkg install (see
pkg-install(8)) will automatically install it if it is not on the user’s system.

5.9.2. RUN_DEPENDS

This variable specifies executables or files this port depends on during run-time. It is a list of
path:dir[:target] tuples where path is the name of the executable or file, dir is the directory in
which to find it in case it is not available, and target is the target to call in that directory. If path
starts with a slash (/), it is treated as a file and its existence is tested with test -e; otherwise, it is
assumed to be an executable, and which -s is used to determine if the program exists in the search
path.

For example,

RUN_DEPENDS= ${LOCALBASE}/news/bin/innd:news/inn \
xmlcatmgr:textproc/xmlcatmgr

will check if the file or directory /usr/local/news/bin/innd exists, and build and install it from the
news/inn subdirectory of the ports tree if it is not found. It will also see if an executable called
xmlcatmgr is in the search path, and descend into textproc/xmlcatmgr to build and install it if it is
not found.

o In this case, innd is actually an executable; if an executable is in a place that is not
expected to be in the search path, use the full pathname.

82

https://www.freebsd.org/cgi/man.cgi?query=pkg-install&sektion=8&format=html

The official search PATH used on the ports build cluster is

/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin

The dependency is checked from within the install target. Also, the name of the dependency is put
into the package so that pkg install (see pkg-install(8)) will automatically install it if it is not on the
user’s system. The target part can be omitted if it is the same as DEPENDS_TARGET.

A quite common situation is when RUN_DEPENDS is literally the same as BUILD_DEPENDS, especially if
ported software is written in a scripted language or if it requires the same build and run-time
environment. In this case, it is both tempting and intuitive to directly assign one to the other:

RUN_DEPENDS= ${BUILD_DEPENDS}

However, such assignment can pollute run-time dependencies with entries not defined in the port’s
original BUILD_DEPENDS. This happens because of make(1)'s lazy evaluation of variable assignment.
Consider a Makefile with USE_*, which are processed by ports/Mk/bsd.*mk to augment initial build
dependencies. For example, USES= gmake adds devel/gmake to BUILD_DEPENDS. To prevent such
additional dependencies from polluting RUN_DEPENDS, create another variable with the current
content of BUILD_DEPENDS and assign it to both BUILD_DEPENDS and RUN_DEPENDS:

MY_DEPENDS= some:devel/some \
other:lang/other

BUILD_DEPENDS= ${MY_DEPENDS}

RUN_DEPENDS= ${MY_DEPENDS}

Do not use :=to assign BUILD_DEPENDS to RUN_DEPENDS or vice-versa. All variables are
o expanded immediately, which is exactly the wrong thing to do and almost always a
failure.

5.9.3. BUILD_DEPENDS

This variable specifies executables or files this port requires to build. Like RUN_DEPENDS, it is a list of
path:dir[:target] tuples. For example,

BUILD_DEPENDS= unzip:archivers/unzip

will check for an executable called unzip, and descend into the archivers/unzip subdirectory of the
ports tree to build and install it if it is not found.

"build" here means everything from extraction to compilation. The dependency is

o checked from within the extract target. The target part can be omitted if it is the
same as DEPENDS_TARGET

83

https://www.freebsd.org/cgi/man.cgi?query=pkg-install&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/devel/gmake/pkg-descr

5.9.4. FETCH_DEPENDS

This variable specifies executables or files this port requires to fetch. Like the previous two, it is a
list of path:dir[:target] tuples. For example,

FETCH_DEPENDS= ncftp2:net/ncftp2

will check for an executable called ncftp2, and descend into the net/ncftp2 subdirectory of the ports
tree to build and install it if it is not found.

The dependency is checked from within the fetch target. The target part can be omitted if it is the
same as DEPENDS_TARGET.

5.9.5. EXTRACT _DEPENDS

This variable specifies executables or files this port requires for extraction. Like the previous, it is a
list of path:dir[:target] tuples. For example,

EXTRACT_DEPENDS= unzip:archivers/unzip

will check for an executable called unzip, and descend into the archivers/unzip subdirectory of the
ports tree to build and install it if it is not found.

The dependency is checked from within the extract target. The target part can be omitted if it is the
same as DEPENDS_TARGET.

Use this variable only if the extraction does not already work (the default assumes
tar) and cannot be made to work using USES=tar, USES=1ha or USES=zip described in
Using USES Macros.

5.9.6. PATCH_DEPENDS

This variable specifies executables or files this port requires to patch. Like the previous, it is a list of
path:dir[:target] tuples. For example,

PATCH_DEPENDS= ${NONEXISTENT}:java/jfc:extract

will descend into the java/jfc subdirectory of the ports tree to extract it.

The dependency is checked from within the patch target. The target part can be omitted if it is the
same as DEPENDS_TARGET.

5.9.7. USES

Parameters can be added to define different features and dependencies used by the port. They are
specified by adding this line to the Makefile:

84

../uses/index.html#uses
../uses/index.html#uses
../uses/index.html#uses

USES= feature[:arguments]

For the complete list of values, please see Using USES Macros.

A USES cannot be assigned after inclusion of bsd.port.pre.mk.

5.9.8. USE_*

Several variables exist to define common dependencies shared by many ports. Their use is optional,
but helps to reduce the verbosity of the port Makefiles. Each of them is styled as USE_*. These
variables may be used only in the port Makefiles and ports/Mk/bsd.*mk. They are not meant for
user-settable options - use PORT_OPTIONS for that purpose.

It is always incorrect to set any USE_* in /etc/make.conf. For instance, setting

o USE_GCC=X.Y

(where X.Y is version number) would add a dependency on gccXY for every port,
including lang/gccXY itself!

8. USE_*

85

../uses/index.html#uses
../uses/index.html#uses
../uses/index.html#uses

Variable Means

USE_GCC The port requires GCC (gcc or g++) to build. Some
ports need a specific, old GCC version, some
require modern, recent versions. It is typically
set to yes (means always use stable, modern GCC
from ports per GCC_DEFAULT in Mk/bsd.default-
versions.mk). This is also the default value. The
exact version can also be specified, with a value
such as 10. The minimal required version can be
specified as 10+. GCC from the base system is
used when it satisfies the requested version,
otherwise an appropriate compiler is built from
ports, and CC and CXX are adjusted accordingly.
The :build argument following the version
specifier adds only a build time dependency to
the port.

For example:

USE_GCC=yes # port requires a
current version of GCC
USE_GCC=11+:build # port requires
GCC 11 or later at build time only

USE_GCC=any is deprecated and
o should not be used in new
ports

Variables related to gmake and configure are described in Building Mechanisms, while autoconf,
automake and libtool are described in Using GNU Autotools. Perl related variables are described in
Using Perl. X11 variables are listed in Using X11. Using Gnome deals with GNOME and Using KDE
with KDE related variables. Using Java documents Java variables, while Web Applications contains
information on Apache, PHP and PEAR modules. Python is discussed in Using Python, while Ruby in
Using Ruby. Using SDL provides variables used for SDL applications and finally, Using Xfce contains
information on Xfce.

5.9.9. Minimal Version of a Dependency

A minimal version of a dependency can be specified in any *_DEPENDS except LIB_DEPENDS using this
syntax:

p5-Spiffy>=0.26:devel/p5-Spiffy

86

../special/index.html#building
../special/index.html#using-autotools
../special/index.html#using-perl
../special/index.html#using-x11
../special/index.html#using-gnome
../special/index.html#using-kde
../special/index.html#using-java
../special/index.html#using-php
../special/index.html#using-python
../special/index.html#using-ruby
../special/index.html#using-sdl
../special/index.html#using-xfce

The first field contains a dependent package name, which must match the entry in the package
database, a comparison sign, and a package version. The dependency is satisfied if p5-Spiffy-0.26 or
newer is installed on the machine.

5.9.10. Notes on Dependencies

As mentioned above, the default target to call when a dependency is required is DEPENDS_TARGET. It
defaults to install. This is a user variable; it is never defined in a port’s Makefile. If the port needs a
special way to handle a dependency, use the :target part of *_DEPENDS instead of redefining
DEPENDS_TARGET.

When running make clean, the port dependencies are automatically cleaned too. If this is not
desirable, define NOCLEANDEPENDS in the environment. This may be particularly desirable if the port
has something that takes a long time to rebuild in its dependency list, such as KDE, GNOME or
Mozilla.

To depend on another port unconditionally, use the variable ${NONEXISTENT} as the first field of
BUILD_DEPENDS or RUN_DEPENDS. Use this only when the source of the other port is needed. Compilation
time can be saved by specifying the target too. For instance

BUILD_DEPENDS= ${NONEXISTENT}:graphics/jpeg:extract

will always descend to the jpeg port and extract it.

5.9.11. Circular Dependencies Are Fatal
o Do not introduce any circular dependencies into the ports tree!

The ports building technology does not tolerate circular dependencies. If one is introduced,
someone, somewhere in the world, will have their FreeBSD installation broken almost immediately,
with many others quickly to follow. These can really be hard to detect. If in doubt, before making
that change, make sure to run: cd /usr/ports; make index. That process can be quite slow on older
machines, but it may be able to save a large number of people, including yourself, a lot of grief in
the process.

5.9.12. Problems Caused by Automatic Dependencies

Dependencies must be declared either explicitly or by using the OPTIONS framework. Using other
methods like automatic detection complicates indexing, which causes problems for port and
package management.

87

{5l 40. Wrong Declaration of an Optional Dependency

.include <bsd.port.pre.mk>

.if exists(${LOCALBASE}/bin/foo)
LIB_DEPENDS= libbar.so:foo/bar
.endif

The problem with trying to automatically add dependencies is that files and settings outside an
individual port can change at any time. For example: an index is built, then a batch of ports are
installed. But one of the ports installs the tested file. The index is now incorrect, because an
installed port unexpectedly has a new dependency. The index may still be wrong even after
rebuilding if other ports also determine their need for dependencies based on the existence of
other files.

{5l 41. Correct Declaration of an Optional Dependency

OPTIONS_DEFINE= BAR
BAR_DESC= Calling cellphones via bar

BAR _LIB_DEPENDS= libbar.so:foo/bar

Testing option variables is the correct method. It will not cause inconsistencies in the index of a
batch of ports, provided the options were defined prior to the index build. Simple scripts can then
be used to automate the building, installation, and updating of these ports and their packages.

5.10. Slave Ports and MASTERDIR

If the port needs to build slightly different versions of packages by having a variable (for instance,
resolution, or paper size) take different values, create one subdirectory per package to make it
easier for users to see what to do, but try to share as many files as possible between ports. Typically,
by using variables cleverly, only a very short Makefile is needed in all but one of the directories. In
the sole Makefile, use MASTERDIR to specify the directory where the rest of the files are. Also, use a
variable as part of PKGNAMESUFFIX so the packages will have different names.

This will be best demonstrated by an example. This is part of print/pkfonts300/Makefile;

88

PORTNAME= pkfonts${RESOLUTION}
PORTVERSION= 1.0
DISTFILES= pk${RESOLUTION}.tar.gz

PLIST= ${PKGDIR}/pkg-plist.${RESOLUTION}

.if !defined(RESOLUTION)
RESOLUTION= 300
.else
.if ${RESOLUTION} !'= 118 && ${RESOLUTION} != 240 && \
${RESOLUTION} !'= 300 && ${RESOLUTION} != 360 && \
${RESOLUTION} '= 400 && ${RESOLUTION} !'= 600
.BEGIN:
@${ECHO_MSG} "Error: invalid value for RESOLUTION: \"${RESOLUTION}\""
@${ECHO_MSG} "Possible values are: 118, 240, 300, 360, 400 and 600."

@${FALSE}
.endif
.endif

print/pkfonts300 also has all the regular patches, package files, etc. Running make there, it will take
the default value for the resolution (300) and build the port normally.

As for other resolutions, this is the entire print/pkfonts360/Makefile:

RESOLUTION= 360
MASTERDIR= ${.CURDIR}/../pkfonts300

.include "${MASTERDIR}/Makefile"

(print/pkfonts118/Makefile, print/pkfonts600/Makefile, and all the other are similar). MASTERDIR
definition tells bsd.port.mk that the regular set of subdirectories like FILESDIR and SCRIPTDIR are to
be found under pkfonts300. The RESOLUTION=360 line will override the RESOLUTION=300 line in
pkfonts300/Makefile and the port will be built with resolution set to 360.

5.11. Man Pages

If the port anchors its man tree somewhere other than PREFIX, use MANDIRS to specify those
directories. Note that the files corresponding to manual pages must be placed in pkg-plist along
with the rest of the files. The purpose of MANDIRS is to enable automatic compression of manual
pages, therefore the file names are suffixed with .gz.

5.12. Info Files

If the package needs to install GNU info files, list them in INFO (without the trailing .info), one entry
per document. These files are assumed to be installed to PREFIX/INFO_PATH. Change INFO_PATH if
the package uses a different location. However, this is not recommended. These entries contain just
the path relative to PREFIX/INFO_PATH. For example, lang/gcc34 installs info files to

89

https://cgit.freebsd.org/ports/tree/print/pkfonts300/pkg-descr
https://cgit.freebsd.org/ports/tree/lang/gcc34/pkg-descr

PREFIX/INFO_PATH/gcc34, and INFO will be something like this:
INFO= gcc34/cpp gcc34/cppinternals gce34/q77 ...

Appropriate installation/de-installation code will be automatically added to the temporary pkg-plist
before package registration.

5.13. Maketfile Options

Many applications can be built with optional or differing configurations. Examples include choice
of natural (human) language, GUI versus command-line, or type of database to support. Users may
need a different configuration than the default, so the ports system provides hooks the port author
can use to control which variant will be built. Supporting these options properly will make users
happy, and effectively provide two or more ports for the price of one.

5.13.1. OPTIONS

5.13.1.1. Background

OPTIONS_* give the user installing the port a dialog showing the available options, and then saves
those options to ${PORT_DBDIR}/${OPTIONS_NAME}/options. The next time the port is built, the
options are reused. PORT_DBDIR defaults to /var/db/ports. OPTIONS_NAME is to the port origin with an
underscore as the space separator, for example, for dns/bind99 it will be dns_bind99.

When the user runs make config (or runs make build for the first time), the framework checks for
${PORT_DBDIR}/${OPTIONS_NAME}/options. If that file does not exist, the values of OPTIONS_* are
used, and a dialog box is displayed where the options can be enabled or disabled. Then options is
saved and the configured variables are used when building the port.

If a new version of the port adds new OPTIONS, the dialog will be presented to the user with the
saved values of old OPTIONS prefilled.

make showconfig shows the saved configuration. Use make rmconfig to remove the saved
configuration.

5.13.1.2. Syntax

OPTIONS_DEFINE contains a list of OPTIONS to be used. These are independent of each other and are
not grouped:

OPTIONS_DEFINE= OPT1 OPT2

Once defined, OPTIONS are described (optional, but strongly recommended):

90

https://cgit.freebsd.org/ports/tree/dns/bind99/pkg-descr

OPT1_DESC= Describe OPT1
OPT2_DESC= Describe OPT2
OPT3_DESC= Describe OPT3
OPT4_DESC= Describe OPT4
OPT5_DESC= Describe OPT5
OPT6_DESC= Describe OPT6

ports/Mk/bsd.options.desc.mk has descriptions for many common OPTIONS. While often useful,
override them if the description is insufficient for the port.

When describing options, view it from the perspective of the user: "What
functionality does it change?" and "Why would I want to enable this?" Do not just
(r) repeat the name. For example, describing the NLS option as "include NLS support"”
- does not help the user, who can already see the option name but may not know

what it means. Describing it as "Native Language Support via gettext utilities" is
much more helpful.

o Option names are always in all uppercase. They cannot use mixed case or
lowercase.

OPTIONS can be grouped as radio choices, where only one choice from each group is allowed:

OPTIONS_SINGLE= Sa1
OPTIONS_SINGLE_SG1= OPT3 OPT4

g There must be one of each OPTIONS_SINGLE group selected at all times for the
options to be valid. One option of each group must be added to OPTIONS_DEFAULT.

OPTIONS can be grouped as radio choices, where none or only one choice from each group is
allowed:

OPTIONS_RADIO= RG1
OPTIONS_RADIO_RG1= OPT7 OPT8

OPTIONS can also be grouped as "multiple-choice" lists, where at least one option must be enabled:

OPTIONS_MULTI= MG1
OPTIONS_MULTI_MG1= OPT5 OPT6

OPTIONS can also be grouped as "multiple-choice" lists, where none or any option can be enabled:

OPTIONS_GROUP= @@1
OPTIONS_GROUP_GG1= OPT9 OPT10

91

OPTIONS are unset by default, unless they are listed in OPTIONS_DEFAULT:

OPTIONS_DEFAULT= OPT1 OPT3 OPT6

OPTIONS definitions must appear before the inclusion of bsd.port.options.mk. PORT_OPTIONS values
can only be tested after the inclusion of bsd.port.options.mk. Inclusion of bsd.port.pre.mk can be
used instead, too, and is still widely used in ports written before the introduction of
bsd.port.options.mk. But be aware that some variables will not work as expected after the inclusion
of bsd.port.pre.mKk, typically some USE_* flags.

{5 42. Simple Use of OPTIONS

OPTIONS_DEFINE= FOO BAR
OPTIONS_DEFAULT=FO0

FOO_DESC= Option foo support
BAR_DESC= Feature bar support

Will add --with-foo / --without-foo
FOO_CONFIGURE WITH= foo
BAR_RUN_DEPENDS= bar:bar/bar

.include <bsd.port.mk>

{5 43. Check for Unset Port OPTIONS

.if | ${PORT_OPTIONS:MEXAMPLES}
CONFIGURE_ARGS+=--without-examples
.endif

The form shown above is discouraged. The preferred method is using a configure knob to
really enable and disable the feature to match the option:

Will add --with-examples / --without-examples
EXAMPLES_CONFIGURE_WITH= examples

92

{5 44. Practical Use of OPTIONS

OPTIONS_DEFINE= EXAMPLES
OPTIONS_DEFAULT= PGSQL LDAP SSL

OPTIONS_SINGLE= BACKEND
OPTIONS_SINGLE_BACKEND= MYSQL PGSQL BDB

OPTIONS_MULTI= AUTH
OPTIONS_MULTI_AUTH= LDAP PAM SSL

EXAMPLES DESC= Install extra examples

MYSQL_DESC= Use MySQL as backend

PGSQL_DESC= Use PostgreSQL as backend

BDB_DESC= Use Berkeley DB as backend

LDAP_DESC= Build with LDAP authentication support
PAM_DESC= Build with PAM support

SSL_DESC= Build with OpenSSL support

Will add USE_PGSQL=yes

PGSQL_USE= pgsql=yes

Will add --enable-postgres / --disable-postgres
PGSQL_CONFIGURE_ENABLE= postgres

ICU_LIB_DEPENDS= libicuuc.so:devel/icu

Will add --with-examples / --without-examples
EXAMPLES_CONFIGURE_WITH= examples

Check other OPTIONS

.include <bsd.port.mk>

5.13.1.3. Default Options

These options are always on by default.

DOCS - build and install documentation.

NLS - Native Language Support.

EXAMPLES - build and install examples.

IPV6 - IPV6 protocol support.

o There is no need to add these to OPTIONS DEFAULT. To have them active, and show
up in the options selection dialog, however, they must be added to OPTIONS_DEFINE.

5.13.2. Feature Auto-Activation

When using a GNU configure script, keep an eye on which optional features are activated by auto-
detection. Explicitly disable optional features that are not needed by adding --without-xxx or
--disable-xxx in CONFIGURE_ARGS.

{5 45. Wrong Handling of an Option

.if ${PORT_OPTIONS:MFOO}

LIB_DEPENDS+= libfoo.so:devel/foo
CONFIGURE ARGS+= --enable-foo
.endif

In the example above, imagine a library libfoo is installed on the system. The user does not want
this application to use libfoo, so he toggled the option off in the make config dialog. But the
application’s configure script detects the library present in the system and includes its support in
the resulting executable. Now when the user decides to remove libfoo from the system, the ports
system does not protest (no dependency on libfoo was recorded) but the application breaks.

f5l 46. Correct Handling of an Option
FOO_LIB_DEPENDS= 1ibfoo.so:devel/foo

Will add --enable-foo / --disable-foo
FOO_CONFIGURE _ENABLE= foo

Under some circumstances, the shorthand conditional syntax can cause problems
with complex constructs. The errors are usually Malformed conditional, an
alternative syntax can be used.

o .if lempty(VARIABLE:MVALUE)

as an alternative to

.if ${VARIABLE:MVALUE}

5.13.3. Options Helpers

There are some macros to help simplify conditional values which differ based on the options set.
For easier access, a comprehensive list is provided:

PLIST_SUB, SUB_LIST

For automatic %%0PT%% and %%NOOPT%% generation, see OPTIONS_SUB.

94

For more complex usage, see Generic Variables Replacement, OPT_VARIABLE and OPT_VARIABLE_OFF.

CONFIGURE _ARGS
For --enable-x and --disable-x, see OPT_CONFIGURE _ENABLE.

For --with-x and --without-x, see OPT_CONFIGURE _WITH.
For all other cases, see OPT_CONFIGURE _ON and OPT_CONFIGURE OFF.

CMAKE_ARGS

For arguments that are booleans (on, off, true, false, 0, 1) see OPT_CMAKE_BOOL and
OPT_CMAKE _BOOL_OFF.

For all other cases, see OPT_CMAKE_ON and OPT_CMAKE OFF.

MESON_ARGS
For arguments that take true or false, see OPT_MESON_TRUE and OPT_MESON_FALSE.

For arguments that take yes or no, use OPT_MESON_YES and OPT_MESON_NO.
For arguments that take enabled or disabled, see OPT_MESON_ENABLED and OPT_MESON_DISABLED.
For all other cases, use OPT_MESON_ON and OPT_MESON_OFF.

QMAKE _ARGS
See OPT_QMAKE_ON and OPT_QMAKE _OFF.

USE_*
See OPT_USE and OPT_USE_OFF.

* DEPENDS
See Dependencies, OPT_DEPTYPE and OPT_DEPTYPE_OFF.

* (Any variable)

The most used variables have direct helpers, see Generic Variables Replacement, OPT_VARIABLE
and OPT_VARIABLE_OFF.

For any variable without a specific helper, see OPT_VARS and OPT_VARS_OFF.

Options dependencies

When an option need another option to work, see OPT_IMPLIES.

Options conflicts
When an option cannot work if another is also enabled, see OPT_PREVENTS and OPT_PREVENTS_MSG.

Build targets

When an option need some extra processing, see Additional Build Targets, target-OPT-on and
target-0PT-off.

95

5.13.3.1. OPTIONS_SUB

If OPTIONS_SUB is set to yes then each of the options added to OPTIONS_DEFINE will be added to
PLIST_SUB and SUB_LIST, for example:

OPTIONS_DEFINE= OPT1
OPTIONS_SUB= yes

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

PLIST _SUB+= OPT1="" NO_OPT1="@comment "
SUB_LIST+= OPT1="" NO_OPT1="@comment "
.else

PLIST_SUB+= OPT1="@comment " NO_OPT1=""
SUB_LIST+= OPT1="@comment " NO_OPT1=""
.endif

e The value of OPTIONS_SUB is ignored. Setting it to any value will add PLIST_SUB and
SUB_LIST entries for all options.

5.13.3.2. OPT_USE and OPT_USE_OFF

When option OPT is selected, for each key=value pair in OPT_USE, value is appended to the
corresponding USE_KEY. If value has spaces in it, replace them with commas and they will be
changed back to spaces during processing. OPT_USE_OFF works the same way, but when OPT is not
selected. For example:

OPTIONS_DEFINE= OPT1

OPT1_USES= xorg

OPT1_USE= mysql=yes xorg=x11,xextproto,xext,xrandr
OPT1_USE_OFF= openssl=yes

is equivalent to:

96

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
USE_MYSQL= yes

USES+= xorg

USE_XORG= x11 xextproto xext xrandr
.else

USE_OPENSSL= yes

.endif

5.13.3.3. CONFIGURE _ARGS Helpers

5.13.3.3.1. OPT_CONFIGURE_ENABLE

When option OPT is selected, for each entry in OPT_CONFIGURE_ENABLE then --enable-entry is
appended to CONFIGURE_ARGS. When option OPT is not selected, --disable-entry is appended to
CONFIGURE_ARGS. An optional argument can be specified with an = symbol. This argument is only
appended to the --enable-entry configure option. For example:

OPTIONS_DEFINE= OPT1 OPT2
OPT1_CONFIGURE_ENABLE= test1 test2
OPT2_CONFIGURE_ENABLE= test2=exhaustive

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

CONFIGURE _ARGS+= --enable-test1 --enable-test?2
.else

CONFIGURE _ARGS+= --disable-test1 --disable-test2
.endif

.if ${PORT_OPTIONS:MOPT2}

CONFIGURE _ARGS+= --enable-test2=exhaustive
.else

CONFIGURE _ARGS+= --disable-test2

.endif

5.13.3.3.2. OPT_CONFIGURE_WITH

When option OPT is selected, for each entry in OPT_CONFIGURE_WITH then --with-_entry is appended
to CONFIGURE_ARGS. When option OPT is not selected, --without-entry is appended to CONFIGURE_ARGS.

97

An optional argument can be specified with an = symbol. This argument is only appended to the
--with-entry configure option. For example:

OPTIONS_DEFINE= OPT1 OPT2
OPT1_CONFIGURE WITH= test1
OPT2_CONFIGURE WITH= test2=exhaustive

is equivalent to:

OPTIONS_DEFINE= OPT1 OPT2
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

CONFIGURE _ARGS+= --with-test1
.else

CONFIGURE _ARGS+= --without-test1
.endif

.if ${PORT_OPTIONS:MOPT2}

CONFIGURE _ARGS+= --with-test2=exhaustive
.else

CONFIGURE_ARGS+= --without-test2

.endif

5.13.3.3.3. OPT_CONFIGURE_ON and OPT_CONFIGURE_OFF

When option OPT is selected, the value of OPT_CONFIGURE_ON, if defined, is appended to
CONFIGURE _ARGS. OPT_CONFIGURE_OFF works the same way, but when OPT is not selected. For example:

OPTIONS_DEFINE= OPT1
OPT1_CONFIGURE ON= --add-test
OPT1_CONFIGURE OFF= --no-test

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

CONFIGURE _ARGS+= --add-test
.else
CONFIGURE _ARGS+= --no-test
.endif

98

G Most of the time, the helpers in OPT_CONFIGURE_ENABLE and OPT_CONFIGURE_WITH
- provide a shorter and more comprehensive functionality.

5.13.3.4. CMAKE_ARGS Helpers

5.13.3.4.1. OPT_CMAKE_ON and OPT_CMAKE_OFF

When option OPT is selected, the value of OPT_CMAKE_ON, if defined, is appended to CMAKE_ARGS.
OPT_CMAKE _OFF works the same way, but when OPT is not selected. For example:

OPTIONS_DEFINE= OPT1
OPT1_CMAKE ON= -DTEST:BOOL=true -DDEBUG:BOOL=true
OPT1_CMAKE_OFF= -DOPTIMIZE:BOOL=true

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

CMAKE_ARGS+= -DTEST:BOOL=true -DDEBUG:BOOL=true

.else

CMAKE_ARGS+= -DOPTIMIZE:BOOL=true

.endif
(r) See OPT_CMAKE_BOOL and OPT_CMAKE_BOOL_OFF for a shorter helper when the value is
- boolean.

5.13.3.4.2. OPT_CMAKE_BOOL and OPT_CMAKE _BOOL_OFF

When option OPT is selected, for each entry in OPT_CMAKE_BOOL then -D_entry_:B00OL=true is appended
to CMAKE_ARGS. When option OPT is not selected, -D_entry_:B00L=false is appended to CONFIGURE_ARGS.
OPT_CMAKE _BOOL_OFF is the opposite, -D_entry_:B00L=false is appended to CMAKE_ARGS when the option
is selected, and -D_entry_:B0OL=true when the option is not selected. For example:

OPTIONS_DEFINE= OPT1
OPT1_CMAKE_BOOL= TEST DEBUG
OPT1_CMAKE_BOOL _OFF= OPTIMIZE

is equivalent to:

99

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>
.if ${PORT_OPTIONS:MOPT1}

CMAKE _ARGS+= -DTEST:BOOL=true -DDEBUG:BOOL=true \
-DOPTIMIZE:BOOL=false

.else

CMAKE _ARGS+= -DTEST:BOOL=false -DDEBUG:BOOL=false \
-DOPTIMIZE:BOOL=true

.endif

5.13.3.5. MESON_ARGS Helpers

5.13.3.5.1. OPT_MESON_ON and OPT_MESON_OFF

When option OPT is selected, the value of OPT_MESON_ON, if defined, is appended to MESON_ARGS.
OPT_MESON_OFF works the same way, but when OPT is not selected. For example:

OPTIONS_DEFINE= OPT1
OPT1_MESON_ON= -Dopt=1
OPT1_MESON_OFF= -Dopt=2

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

MESON_ARGS+= -Dopt=1
.else
MESON_ARGS+= -Dopt=2
.endif

5.13.3.5.2. OPT_MESON_TRUE and OPT_MESON_FALSE

When option OPT is selected, for each entry in OPT_MESON_TRUE then -D_entry_=true is appended to
MESON_ARGS. When option OPT is not selected, -D_entry_=false is appended to MESON_ARGS.
OPT_MESON_FALSE is the opposite, -D_entry_=false is appended to MESON_ARGS when the option is
selected, and -D_entry_=true when the option is not selected. For example:

OPTIONS_DEFINE= OPT1
OPT1_MESON_TRUE= test debug
OPT1_MESON_FALSE= optimize

100

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>
.if ${PORT_OPTIONS:MOPT1}

MESON_ARGS+= -Dtest=true -Ddebug=true \
-Doptimize=false

.else

MESON_ARGS+= -Dtest=false -Ddebug=false \
-Doptimize=true

.endif

5.13.3.5.3. OPT_MESON_YES and OPT_MESON_NO

When option OPT is selected, for each entry in OPT_MESON_YES then -D_entry_=yes is appended to
MESON_ARGS. When option OPT is not selected, -D_entry_=no is appended to MESON_ARGS. OPT_MESON_NO is
the opposite, -D_entry_=no is appended to MESON_ARGS when the option is selected, and -D_entry_=yes
when the option is not selected. For example:

OPTIONS_DEFINE= OPT1
OPT1_MESON_YES= test debug
OPT1_MESON_NO= optimize

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>
.if ${PORT_OPTIONS:MOPT1}

MESON_ARGS+= -Dtest=yes -Ddebug=yes \
-Doptimize=no

.else

MESON_ARGS+= -Dtest=no -Ddebug=no \
-Doptimize=yes

.endif

5.13.3.5.4. OPT_MESON_ENABLED and OPT_MESON_DISABLED

When option OPT is selected, for each entry in OPT_MESON_ENABLED then -D_entry_=enabled is
appended to MESON_ARGS. When option OPT is not selected, -D_entry_=disabled is appended to
MESON_ARGS. OPT_MESON_DISABLED is the opposite, -D_entry_=disabled is appended to MESON_ARGS when
the option is selected, and -D_entry_=enabled when the option is not selected. For example:

101

OPTIONS_DEFINE= OPT1
OPTT1_MESON_ENABLED= test
OPT1_MESON_DISABLED= debug

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

MESON_ARGS+= -Dtest=enabled -Ddebug=disabled
.else
MESON_ARGS+= -Dtest=disabled -Ddebug=enabled
.endif

5.13.3.6. OPT_QMAKE_ON and OPT_QMAKE _OFF

When option OPT is selected, the value of OPT_QMAKE_ON, if defined, is appended to QMAKE_ARGS.
OPT_QMAKE _OFF works the same way, but when 0OPT is not selected. For example:

OPTIONS_DEFINE= OPT1
OPT1_QMAKE_ON= -DTEST:BOOL=true
OPT1_QMAKE_OFF= -DPRODUCTION:BOOL=true

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

QMAKE _ARGS+= -DTEST:BOOL=true

.else

QMAKE _ARGS+= -DPRODUCTION:BOOL=true
.endif

5.13.3.7. OPT_IMPLIES

Provides a way to add dependencies between options.

When OPT is selected, all the options listed in this variable will be selected too. Using the
OPT_CONFIGURE_ENABLE described earlier to illustrate:

102

OPTIONS_DEFINE= OPT1 OPT2
OPTT1_IMPLIES= OPT2

OPT1_CONFIGURE_ENABLE= opt1
OPT2_CONFIGURE_ENABLE= opt2

Is equivalent to:

OPTIONS_DEFINE= OPT1 OPT2
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

CONFIGURE _ARGS+= --enable-opt1
.else
CONFIGURE _ARGS+= --disable-opt1
.endif

.if ${PORT_OPTIONS:MOPT2} || ${PORT_OPTIONS:MOPT1}

CONFIGURE _ARGS+= --enable-opt?2
.else
CONFIGURE _ARGS+= --disable-opt2
.endif

{5 47. Simple Use of OPT_IMPLIES

This port has a X11 option, and a GNOME option that needs the X11 option to be selected to build.

OPTIONS_DEFINE= X171 GNOME
OPTIONS_DEFAULT= X11

X11_USES= xorg

X11_USE= xorg=xi,xextproto
GNOME_USE= gnome=gtk30
GNOME_IMPLIES= X11

5.13.3.8. OPT_PREVENTS and OPT_PREVENTS_MSG

Provides a way to add conflicts between options.

When OPT is selected, all the options listed in OPT_PREVENTS must be un-selected. If OPT_PREVENTS_MSG
is set and a conflict is triggered, its content will be shown explaining why they conflict. For
example:

103

OPTIONS_DEFINE= OPT1 OPT2
OPT1_PREVENTS= OPT2
OPT1_PREVENTS_MSG= OPT1 and OPT2 enable conflicting options

Is roughly equivalent to:

OPTIONS_DEFINE= OPT1 OPT2
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT2} && ${PORT_OPTIONS:MOPT1}
BROKEN= Option OPT1 conflicts with OPT2 (select only one)
.endif

The only difference is that the first one will write an error after running make config, suggesting
changing the selected options.

{5 48. Simple Use of OPT_PREVENTS

This port has X509 and SCTP options. Both options add patches, but the patches conflict with
each other, so they cannot be selected at the same time.

OPTIONS_DEFINE= X509 SCTP

SCTP_PATCHFILES= ${PORTNAME}-6.8p1-sctp-2573.patch.qgz:-p1
SCTP_CONFIGURE_WITH= sctp

X509_PATCH_SITES= http://www.roumenpetrov.info/openssh/x509/:x509
X509_PATCHFILES= ${PORTNAME}-7.0p1+x509-8.5.diff.gz:-p1:x509
X509_PREVENTS= SCTP

X509_PREVENTS_MSG= X509 and SCTP patches conflict

5.13.3.9. OPT_VARS and OPT_VARS_OFF

Provides a generic way to set and append to variables.

Before using OPT_VARS and OPT_VARS_OFF, see if there is already a more specific
A helper available in Generic Variables Replacement, OPT_VARIABLE and
OPT_VARIABLE_OFF.

When option OPT is selected, and OPT_VARS defined, key=value and key+=value pairs are evaluated

from OPT_VARS. An = cause the existing value of KEY to be overwritten, an += appends to the value.
OPT_VARS_OFF works the same way, but when OPT is not selected.

104

OPTIONS_DEFINE= OPT1 OPT2 OPT3
OPT1_VARS= also_build+=bin1
OPT2 _VARS= also_build+=bin2
OPT3_VARS= bin3_build=yes
OPT3_VARS_OFF= bin3_build=no

MAKE_ARGS= ALSO_BUILD="${ALSO_BUILD}" BIN3_BUILD="${BIN3_BUILD}"

is equivalent to:

OPTIONS_DEFINE= OPT1 OPT2
MAKE_ARGS= ALSO_BUILD="${ALSO_BUILD}" BIN3_BUILD="${BIN3_BUILD}"
.include <bsd.port.options.mk>

.1f ${PORT _OPTIONS:MOPT1}
ALSO BUILD+= bin1
.endif

.if ${PORT_OPTIONS:MOPT2}
ALSO BUILD+= bin2
.endif

.if ${PORT_OPTIONS:MOPT2}
BIN3_BUILD= yes

.else

BIN3_BUILD= no

.endif

Values containing whitespace must be enclosed in quotes:
OPT_VARS= foo="bar baz"

This is due to the way make(1) variable expansion deals with whitespace. When
OPT_VARS= foo=bar baz is expanded, the variable ends up containing two strings,

o foo=bar and baz. But the submitter probably intended there to be only one string,
foo=bar baz. Quoting the value prevents whitespace from being used as a
delimiter.

Also, do not add extra spaces after the var= sign and before the value, it would also
be split into two strings. This will not work:

OPT_VARS= foo= bar

105

https://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html

5.13.3.10. Dependencies, OPT_DEPTYPE and OPT_DEPTYPE_OFF

For any of these dependency types:

* PKG_DEPENDS

* EXTRACT_DEPENDS
* PATCH_DEPENDS

* FETCH_DEPENDS

» BUILD_DEPENDS

» LIB_DEPENDS

* RUN_DEPENDS

When option OPT is selected, the value of OPT_DEPTYPE, if defined, is appended to DEPTYPE.
OPT_DEPTYPE_OFF works the same, but when OPT is not selected. For example:

OPTIONS_DEFINE= OPT1
OPT1_LIB_DEPENDS= 1liba.so:devel/a
OPT1_LIB_DEPENDS OFF= 1libb.so:devel/b

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

LIB DEPENDS+= 1liba.so:devel/a
.else

LIB DEPENDS+= 1ibb.so:devel/b
.endif

5.13.3.11. Generic Variables Replacement, OPT_VARIABLE and OPT_VARIABLE_OFF

For any of these variables:

o ALL_TARGET

* BINARY_ALIAS

* BROKEN

* CATEGORIES

* CFLAGS

* CONFIGURE_ENV

* CONFLICTS

e CONFLICTS_BUILD

106

CONFLICTS_INSTALL
CPPFLAGS
CXXFLAGS
DESKTOP_ENTRIES
DISTFILES
EXTRACT_ONLY
EXTRA_PATCHES
GH_ACCOUNT
GH_PROJECT
GH_SUBDIR
GH_TAGNAME
GH_TUPLE
GL_ACCOUNT
GL_COMMIT
GL_PROJECT
GL_SITE
GL_SUBDIR
GL_TUPLE
IGNORE

INFO
INSTALL_TARGET
LDFLAGS

LIBS

MAKE _ARGS
MAKE_ENV
MASTER_SITES
PATCHFILES
PATCH_SITES
PLIST_DIRS
PLIST_FILES
PLIST_SUB
PORTDOCS
PORTEXAMPLES
SUB_FILES
SUB_LIST

107

o TEST_TARGET
* USES

When option OPT is selected, the value of OPT_ABOVEVARIABLE, if defined, is appended to
ABOVEVARIABLE. OPT_ABOVEVARIABLE_OFF works the same way, but when OPT is not selected. For
example:

OPTIONS_DEFINE= OPT1
OPT1_USES= gmake
OPT1_CFLAGS_OFF= -DTEST

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

USES+= gmake
.else
CFLAGS+= -DTEST
.endif
o Some variables are not in this list, in particular PKGNAMEPREFIX and PKGNAMESUFFIX.
This is intentional. A port must not change its name when its option set changes.

Some of these variables, at least ALL_TARGET, DISTFILES and INSTALL_TARGET, have
their default values set after the options are processed.

With these lines in the Makefile:

ALL_TARGET= all

DOCS_ALL_TARGET= doc

A If the DOCS option is enabled, ALL_TARGET will have a final value of all doc; if the
option is disabled, it would have a value of all.

With only the options helper line in the Makefile:
DOCS_ALL_TARGET= doc

If the DOCS option is enabled, ALL_TARGET will have a final value of doc; if the option
is disabled, it would have a value of all.

108

5.13.3.12. Additional Build Targets, target-0OPT-on and target-0PT-off

These Makefile targets can accept optional extra build targets:

* pre-fetch

* do-fetch

* post-fetch

* pre-extract
* do-extract

* post-extract
* pre-patch

* do-patch

* post-patch

* pre-confiqure
* do-configure
* post-configure
* pre-build

* do-build

e post-build

e pre-install
* do-install

* post-install
* post-stage

* pre-package
* do-package

* post-package

When option OPT is selected, the target TARGET-OPT-on, if defined, is executed after TARGET. TARGET-
OPT-off works the same way, but when 0PT is not selected. For example:

OPTIONS_DEFINE= OPT1

post-patch-0PT1-on:
@${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${EXAMPLESDIR}/|" ${WRKSRC}/Makefile

post-patch-0PT1-off:
@${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${PREFIX}/bin/|" ${WRKSRC}/Makefile

is equivalent to:

109

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>
post-patch:
.if ${PORT_OPTIONS:MOPT1}
@${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${EXAMPLESDIR}/|" ${WRKSRC}/Makefile
.else

@${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${PREFIX}/bin/|"' ${WRKSRC}/Makefile
.endif

5.14. Specifying the Working Directory

Each port is extracted into a working directory, which must be writable. The ports system defaults
to having DISTFILES unpack in to a directory called ${DISTNAME}. In other words, if the Makefile has:

PORTNAME= foo
DISTVERSION= 1.0

then the port’s distribution files contain a top-level directory, foo-1.0, and the rest of the files are
located under that directory.

A number of variables can be overridden if that is not the case.

5.14.1. WRKSRC

The variable lists the name of the directory that is created when the application’s distfiles are
extracted. If our previous example extracted into a directory called foo (and not foo-1.0) write:

WRKSRC= ${WRKDIR}/foo
or possibly

WRKSRC=${WRKDIR}/${PORTNAME}

5.14.2. WRKSRC_SUBDIR

If the source files needed for the port are in a subdirectory of the extracted distribution file, set
WRKSRC_SUBDIR to that directory.

WRKSRC_SUBDIR= src

110

5.14.3. NO_WRKSUBDIR

If the port does not extract in to a subdirectory at all, then set NO_WRKSUBDIR to indicate that.

NO_WRKSUBDIR= yes

Because WRKDIR is the only directory that is supposed to be writable during the
o build, and is used to store many files recording the status of the build, the port’s
extraction will be forced into a subdirectory.

5.15. Conflict Handling

There are three different variables to register a conflict between packages and ports: CONFLICTS,
CONFLICTS_INSTALL and CONFLICTS_BUILD.

o The conflict variables automatically set the variable IGNORE, which is more fully
documented in Marking a Port Not Installable with BROKEN.

When removing one of several conflicting ports, it is advisable to retain CONFLICTS in those other
ports for a few months to cater for users who only update once in a while.

CONFLICTS_INSTALL

If the package cannot coexist with other packages (because of file conflicts, runtime
incompatibilities, etc.). CONFLICTS_INSTALL check is done after the build stage and prior to the
install stage.

CONFLICTS_BUILD

If the port cannot be built when other specific ports are already installed. Build conflicts are not
recorded in the resulting package.

CONFLICTS

If the port cannot be built if a certain port is already installed and the resulting package cannot
coexist with the other package. CONFLICTS check is done prior to the build stage and prior to the
install stage.

The most common content of one of these variable is the package base of another port. The package
base is the package name without the appended version, it can be obtained by running make -V
PKGBASE.

111

../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall

{5 49. Basic usage of CONFLICTS*

dns/bind99 cannot be installed if dns/bind910 is present because they install same files. First
gather the package base to use:

% make -C dns/bind99 -V PKGBASE
bind99

% make -C dns/bind910 -V PKGBASE
bind910

Then add to the Makefile of dns/bind99:

CONFLICTS_INSTALL= bind910

And add to the Makefile of dns/bind910:

CONFLICTS_INSTALL= bind99

Sometimes, only certain versions of another port are incompatible. When this is the case, use the
full package name including the version. If necessary, use shell globs like * and ? so that all
necessary versions are matched.

{5 50. Using CONFLICTS* With Globs.

From versions from 2.0 and up-to 2.4.1_2, deskutils/gnotime used to install a bundled version
of databases/qof.

To reflect this past, the Makefile of databases/qof contains:

CONFLICTS_INSTALL= gnotime-2.[0-3]* \
gnotime-2.4.0* gnotime-2.4.1 \
gnotime-2.4.1_[12]

The first entry match versions 2.0 through 2.3, the second all the revisions of 2.4.0, the third
the exact 2.4.1 version, and the last the first and second revisions of the 2.4.1 version.

deskutils/gnotime does not have any conflicts line because its current version does not conflict
with anything else.

The variable DISABLE_CONFLICTS may be temporarily set when making targets that are not affected
by conflicts. The variable is not to be set in port Makefiles.

% make -DDISABLE_CONFLICTS patch

112

https://cgit.freebsd.org/ports/tree/dns/bind99/pkg-descr
https://cgit.freebsd.org/ports/tree/dns/bind910/pkg-descr
https://cgit.freebsd.org/ports/tree/dns/bind99/pkg-descr
https://cgit.freebsd.org/ports/tree/dns/bind910/pkg-descr
https://cgit.freebsd.org/ports/tree/deskutils/gnotime/pkg-descr
https://cgit.freebsd.org/ports/tree/databases/qof/pkg-descr
https://cgit.freebsd.org/ports/tree/databases/qof/pkg-descr
https://cgit.freebsd.org/ports/tree/deskutils/gnotime/pkg-descr

5.16. Installing Files

The install phase is very important to the end user because it adds files to their
system. All the additional commands run in the port Makefile's *-install targets
should be echoed to the screen. Do not silence these commands with @ or . SILENT.

5.16.1. INSTALL_* Macros

Use the macros provided in bsd.port.mk to ensure correct modes of files in the port’s *-install
targets. Set ownership directly in pkg-plist with the corresponding entries, such as @(owner,group,),
@owner owner, and @group group. These operators work until overridden, or until the end of pkg-plist,
so remember to reset them after they are no longer needed. The default ownership is root:wheel.
See Base Keywords for more information.

o INSTALL_PROGRAM is a command to install binary executables.

» INSTALL_SCRIPT is a command to install executable scripts.

e INSTALL LIBis a command to install shared libraries (but not static libraries).

o INSTALL_KLD is a command to install kernel loadable modules. Some architectures do not like
having the modules stripped, so use this command instead of INSTALL_PROGRAM.

o INSTALL_DATA is a command to install sharable data, including static libraries.

o INSTALL_MAN is a command to install manpages and other documentation (it does not compress
anything).

These variables are set to the install(1) command with the appropriate flags for each situation.

o Do not use INSTALL_LIB to install static libraries, because stripping them renders
them useless. Use INSTALL DATA instead.
5.16.2. Stripping Binaries and Shared Libraries

Installed binaries should be stripped. Do not strip binaries manually unless absolutely required.
The INSTALL_PROGRAM macro installs and strips a binary at the same time. The INSTALL_LIB macro
does the same thing to shared libraries.

When a file must be stripped, but neither INSTALL_PROGRAM nor INSTALL_LIB macros are desirable,
${STRIP_CMD} strips the program or shared library. This is typically done within the post-install
target. For example:

post-install:
${STRIP_CMD} ${STAGEDIR}${PREFIX}/bin/xdl

When multiple files need to be stripped:

113

../plist/index.html#plist-keywords-base
https://www.freebsd.org/cgi/man.cgi?query=install&sektion=1&format=html

post-install:
.for 1 in geometry media body track world

${STRIP_CMD} ${STAGEDIR}${PREFIX}/1ib/1ib${PORTNAME}-${1}.50.0
.endfor

Use file(1) on a file to determine if it has been stripped. Binaries are reported by file(1) as stripped,
or not stripped. Additionally, strip(1) will detect programs that have already been stripped and exit
cleanly.

When WITH_DEBUG is defined, elf files must not be stripped.

The variables (STRIP_CMD, INSTALL_PROGRAM, INSTALL_LIB, ...) and USES provided by the
o framework handle this automatically.

Some software, add -s to their LDFLAGS, in this case, either remove -s if WITH DEBUG
is set, or remove it unconditionally and use STRIP_CMD in post-install.

5.16.3. Installing a Whole Tree of Files

Sometimes, a large number of files must be installed while preserving their hierarchical
organization. For example, copying over a whole directory tree from WRKSRC to a target directory
under PREFIX. Note that PREFIX, EXAMPLESDIR, DATADIR, and other path variables must always be
prepended with STAGEDIR to respect staging (see Staging).

Two macros exist for this situation. The advantage of using these macros instead of cp is that they
guarantee proper file ownership and permissions on target files. The first macro, COPYTREE_BIN, will
set all the installed files to be executable, thus being suitable for installing into PREFIX/bin. The
second macro, COPYTREE_SHARE, does not set executable permissions on files, and is therefore
suitable for installing files under PREFIX/share target.

post-install:
${MKDIR} ${STAGEDIR}${EXAMPLESDIR}
(cd ${WRKSRC}/examples && ${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR})

This example will install the contents of the examples directory in the vendor distfile to the proper
examples location of the port.

post-install:

${MKDIR} ${STAGEDIR}${DATADIR}/summer

(cd ${WRKSRC}/temperatures && ${COPYTREE_SHARE} "June July August"
${STAGEDIR}${DATADIR}/summer)

And this example will install the data of summer months to the summer subdirectory of a DATADIR.

Additional find arguments can be passed via the third argument to COPYTREE_* macros. For example,
to install all files from the first example except Makefiles, one can use these commands.

114

https://www.freebsd.org/cgi/man.cgi?query=file&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=file&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=strip&sektion=1&format=html
../uses/index.html#uses
../special/index.html#staging

post-install:
${MKDIR} ${STAGEDIR}${EXAMPLESDIR}
(cd ${WRKSRC}/examples && \
${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR} "! -name Makefile")

These macros do not add the installed files to pkg-plist. They must be added manually. For optional
documentation (PORTDOCS, see Install Additional Documentation) and examples (PORTEXAMPLES), the
%%PORTDOCS%% or %%PORTEXAMPLES%% prefixes must be prepended in pkg-plist.

5.16.4. Install Additional Documentation

If the software has some documentation other than the standard man and info pages that is useful
for the user, install it under DOCSDIR. This can be done, like the previous item, in the post-install
target.

Create a new directory for the port. The directory name is DOCSDIR. This usually equals PORTNAME.
However, if the user might want different versions of the port to be installed at the same time, the
whole PKGNAME can be used.

Since only the files listed in pkg-plist are installed, it is safe to always install documentation to
STAGEDIR (see Staging). Hence .if blocks are only needed when the installed files are large enough
to cause significant I/O overhead.

post-install:
${MKDIR} ${STAGEDIR}${DOCSDIR}
${INSTALL_MAN} ${WRKSRC}/docs/xvdocs.ps ${STAGEDIR}${DOCSDIR}

On the other hand, if there is a DOCS option in the port, install the documentation in a post-
install-DOCS-on target. These targets are described in Additional Build Targets, target-0PT-on and
target-0PT-off.

Here are some handy variables and how they are expanded by default when used in the Makefile:

» DATADIR gets expanded to PREFIX/shared/PORTNAME.

DATADIR_REL gets expanded to share/PORTNAME.

DOCSDIR gets expanded to PREFIX/shared/doc/PORTNAME.

DOCSDIR_REL gets expanded to share/doc/PORTNAME.

EXAMPLESDIR gets expanded to PREFIX/shared/examples/PORTNAME.

EXAMPLESDIR_REL gets expanded to share/examples/PORTNAME.
The DOCS option only controls additional documentation installed in DOCSDIR. It
does not apply to standard man pages and info pages. Things installed in

EXAMPLESDIR are controlled by the EXAMPLES option.

These variables are exported to PLIST_SUB. Their values will appear there as pathnames relative to

115

../special/index.html#staging

PREFIX if possible. That is, share/doc/PORTNAME will be substituted for %%D0CSDIR%% in the packing
list by default, and so on. (See more on pkg-plist substitution here.)

All conditionally installed documentation files and directories are included in pkg-plist with the
%%PORTDOCS%% prefix, for example:

S%%%%D0CSDIR%%/AUTHORS
%%PORTDOCS%%%%DOCSDIR%%/CONTACT

As an alternative to enumerating the documentation files in pkg-plist, a port can set the variable
PORTDOCS to a list of file names and shell glob patterns to add to the final packing list. The names will
be relative to DOCSDIR. Therefore, a port that utilizes PORTDOCS, and uses a non-default location for its
documentation, must set DOCSDIR accordingly. If a directory is listed in PORTDOCS or matched by a
glob pattern from this variable, the entire subtree of contained files and directories will be
registered in the final packing list. If the DOCS option has been unset then files and directories listed
in PORTDOCS would not be installed or added to port packing list. Installing the documentation at
PORTDOCS as shown above remains up to the port itself. A typical example of utilizing PORTDOCS:

PORTDOCS= README.* Changelog docs/*

The equivalents of PORTDOCS for files installed under DATADIR and EXAMPLESDIR are
PORTDATA and PORTEXAMPLES, respectively.

The contents of pkg-message are displayed upon installation. See the section on
using pkg-message for details. pkg-message does not need to be added to pkg-plist.

5.16.5. Subdirectories Under PREFIX

Try to let the port put things in the right subdirectories of PREFIX. Some ports lump everything and
put it in the subdirectory with the port’s name, which is incorrect. Also, many ports put everything
except binaries, header files and manual pages in a subdirectory of lib, which does not work well
with the BSD paradigm. Many of the files must be moved to one of these directories: etc
(setup/configuration files), libexec (executables started internally), sbin (executables for
superusers/managers), info (documentation for info browser) or share (architecture independent
files). See hier(7) for details; the rules governing /usr pretty much apply to /usr/local too. The
exception are ports dealing with USENET "news". They may use PREFIX/news as a destination for
their files.

5.17. Use BINARY ALIAS to Rename Commands Instead of
Patching the Build

When BINARY_ALIAS is defined it will create symlinks of the given commands in a directory which
will be prepended to PATH.

Use it to substitute hardcoded commands the build phase relies on without having to patch any

116

../plist/index.html#plist-sub
../pkg-files/index.html#porting-message
../pkg-files/index.html#porting-message
../pkg-files/index.html#porting-message
https://www.freebsd.org/cgi/man.cgi?query=hier&sektion=7&format=html

build files.

{5l 51. Using BINARY_ALIAS to Make gsed Available as sed

Some ports expect sed to behave like GNU sed and use features that sed(1) does not provide.
GNU sed is available from textproc/gsed on FreeBSD.

Use BINARY_ALIAS to substitute sed with gsed for the duration of the build:

BUILD_DEPENDS= gsed:textproc/gsed

BINARY_ALIAS= sed=gsed

{5 52. Using BINARY_ALIAS to Provide Aliases for Hardcoded python3 Commands

A port that has a hardcoded reference to python3 in its build scripts will need to have it
available in PATH at build time. Use BINARY_ALIAS to create an alias that points to the right
Python 3 binary:

USES= python:3.4+,build

BINARY_ALIAS= python3=${PYTHON_CMD}

See Using Python for more information about USES=python.

Binary aliases are created after the dependencies provided via BUILD_DEPENDS and
LIB_DEPENDS are processed and before the configure target. This leads to various

o limitations. For example, programs installed via TEST_DEPENDS cannot be used to
create a binary alias as test dependencies specified this way are processed after
binary aliases are created.

117

https://www.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/textproc/gsed/pkg-descr
../special/index.html#using-python

Chapter 6. Special Considerations

This section explains the most common things to consider when creating a port.

6.1. Staging

bsd.port.mk expects ports to work with a "stage directory". This means that a port must not install
files directly to the regular destination directories (that is, under PREFIX, for example) but instead
into a separate directory from which the package is then built. In many cases, this does not require
root privileges, making it possible to build packages as an unprivileged user. With staging, the port
is built and installed into the stage directory, STAGEDIR. A package is created from the stage directory
and then installed on the system. Automake tools refer to this concept as DESTDIR, but in FreeBSD,
DESTDIR has a different meaning (see PREFIX and DESTDIR).

No port really needs to be root. It can mostly be avoided by using USES=uidfix. If

o the port still runs commands like chown(8), chgrp(1), or forces owner or group
with install(1) then use USES=fakeroot to fake those calls. Some patching of the
port’s Makefiles will be needed.

Meta ports, or ports that do not install files themselves but only depend on other ports, must avoid
needlessly extracting the mtree(8) to the stage directory. This is the basic directory layout of the
package, and these empty directories will be seen as orphans. To prevent mtree(8) extraction, add
this line:

NO_MTREE= vyes

(r') Metaports should use USES=metaport. It sets up defaults for ports that do not fetch,
- build, or install anything.

Staging is enabled by prepending STAGEDIR to paths used in the pre-install, do-install, and post-
install targets (see the examples through the book). Typically, this includes PREFIX, ETCDIR, DATADIR,
EXAMPLESDIR, MANPREFIX, DOCSDIR, and so on. Directories should be created as part of the post-install
target. Avoid using absolute paths whenever possible.

O Ports that install kernel modules must prepend STAGEDIR to their destination, by
- default /boot/modules.

6.1.1. Handling Symbolic Links

When creating a symbolic link, relative ones are strongly recommended. Use ${RLN} to create
relative symbolic links. It uses install(1) under the hood to automatically figure out the relative link
to create.

118

../testing/index.html#porting-prefix
../testing/index.html#porting-prefix
../testing/index.html#porting-prefix
../uses/index.html#uses-uidfix
https://www.freebsd.org/cgi/man.cgi?query=chown&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=chgrp&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=install&sektion=1&format=html
../uses/index.html#uses-fakeroot
https://www.freebsd.org/cgi/man.cgi?query=mtree&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=mtree&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=install&sektion=1&format=html

{5l 53. Create Relative Symbolic Links Automatically

${RLN} uses install(1)'s relative symbolic feature which frees the porter of computing the
relative path.

${RLN} ${STAGEDIR}${PREFIX}/1ib/1ibfoo.s0.42 ${STAGEDIR}${PREFIX}/1ib/1libfoo.so
${RLN} ${STAGEDIR}${PREFIX}/1ibexec/foo/bar ${STAGEDIR}${PREFIX}/bin/bar
${RLN} ${STAGEDIR}/var/cache/foo ${STAGEDIR}${PREFIX}/share/foo

Will generate:

% 1s -1F ${STAGEDIR}${PREFIX}/1ib

lrwxr-xr-x 1 nobody nobody 181 Aug 3 11:27 libfoo.so@ -> libfoo.s0.42
-rwxr-xr-x 1 nobody nobody 15 Aug 3 11:24 1libfoo.so.42*

% 1s -1F ${STAGEDIR}${PREFIX}/bin

Llrwxr-xr-x 1 nobody nobody 181 Aug 3 11:27 bar@ -> ../libexec/foo/bar

% 1s -1F ${STAGEDIRDIR}${PREFIX}/share

Lrwxr-xr-x 1 nobody nobody 181 Aug 3 11:27 foo@ -> ../../../var/cache/foo

6.2. Bundled Libraries

This section explains why bundled dependencies are considered bad and what to do about them.

6.2.1. Why Bundled Libraries Are Bad

Some software requires the porter to locate third-party libraries and add the required
dependencies to the port. Other software bundles all necessary libraries into the distribution file.
The second approach seems easier at first, but there are some serious drawbacks:

This list is loosely based on the Fedora and Gentoo wikis, both licensed under the CC-BY-SA 3.0
license.

Security

If vulnerabilities are found in the upstream library and fixed there, they might not be fixed in
the library bundled with the port. One reason could be that the author is not aware of the
problem. This means that the porter must fix them, or upgrade to a non-vulnerable version, and
send a patch to the author. This all takes time, which results in software being vulnerable longer
than necessary. This in turn makes it harder to coordinate a fix without unnecessarily leaking
information about the vulnerability.

Bugs
This problem is similar to the problem with security in the last paragraph, but generally less
severe.

Forking

It is easier for the author to fork the upstream library once it is bundled. While convenient on

119

https://www.freebsd.org/cgi/man.cgi?query=install&sektion=1&format=html
https://fedoraproject.org/wiki/Packaging:No_Bundled_Libraries
http://wiki.gentoo.org/wiki/Why_not_bundle_dependencies
http://creativecommons.org/licenses/by-sa/3.0/

first sight, it means that the code diverges from upstream making it harder to address security
or other problems with the software. A reason for this is that patching becomes harder.

Another problem of forking is that because code diverges from upstream, bugs get solved over
and over again instead of just once at a central location. This defeats the idea of open source
software in the first place.

Symbol collision

When a library is installed on the system, it might collide with the bundled version. This can
cause immediate errors at compile or link time. It can also cause errors when running the
program which might be harder to track down. The latter problem could be caused because the
versions of the two libraries are incompatible.

Licensing

When bundling projects from different sources, license issues can arise more easily, especially
when licenses are incompatible.

Waste of resources

Bundled libraries waste resources on several levels. It takes longer to build the actual
application, especially if these libraries are already present on the system. At run-time, they can
take up unnecessary memory when the system-wide library is already loaded by one program
and the bundled library is loaded by another program.

Waste of effort

When a library needs patches for FreeBSD, these patches have to be duplicated again in the
bundled library. This wastes developer time because the patches might not apply cleanly. It can
also be hard to notice that these patches are required in the first place.

6.2.2. What to do About Bundled Libraries

Whenever possible, use the unbundled version of the library by adding a LIB_DEPENDS to the port. If
such a port does not exist yet, consider creating it.

Only use bundled libraries if the upstream has a good track record on security and using
unbundled versions leads to overly complex patches.

In some very special cases, for example emulators, like Wine, a port has to bundle
libraries, because they are in a different architecture, or they have been modified

o to fit the software’s use. In that case, those libraries should not be exposed to other
ports for linking. Add BUNDLE_LIBS=yes to the port’s Makefile. This will tell pkg(8) to
not compute provided libraries. Always ask the Ports Management Team
<portmgr@FreeBSD.org> before adding this to a port.

6.3. Shared Libraries

If the port installs one or more shared libraries, define a USE_LDCONFIG make variable, which will
instruct a bsd.port.mk to run ${LDCONFIG} -m on the directory where the new library is installed
(usually PREFIX/lib) during post-install target to register it into the shared library cache. This

120

https://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html
mailto:portmgr@FreeBSD.org

variable, when defined, will also facilitate addition of an appropriate @exec /sbin/ldconfig -m and
@unexec /sbin/ldconfig -R pair into pkg-plist, so that a user who installed the package can start
using the shared library immediately and de-installation will not cause the system to still believe
the library is there.

USE_LDCONFIG= vyes

The default directory can be overridden by setting USE_LDCONFIG to a list of directories into which
shared libraries are to be installed. For example, if the port installs shared libraries into
PREFIX/lib/foo and PREFIX/lib/bar use this in Makefile:

USE_LDCONFIG= ${PREFIX}/1ib/foo ${PREFIX}/1lib/bar

Please double-check, often this is not necessary at all or can be avoided through -rpath or setting
LD_RUN_PATH during linking (see lang/mosml for an example), or through a shell-wrapper which sets
LD_LIBRARY_PATH before invoking the binary, like www/seamonkey does.

When installing 32-bit libraries on a 64-bit system, use USE_LDCONFIG32 instead.
If the software uses autotools, and specifically 1ibtool, add USES=1ibtool.

When the major library version number increments in the update to the new port version, all other
ports that link to the affected library must have their PORTREVISION incremented, to force
recompilation with the new library version.

6.4. Ports with Distribution Restrictions or Legal
Concerns

Licenses vary, and some of them place restrictions on how the application can be packaged,
whether it can be sold for profit, and so on.

It is the responsibility of a porter to read the licensing terms of the software and

o make sure that the FreeBSD project will not be held accountable for violating them
by redistributing the source or compiled binaries either via FTP/HTTP or CD-ROM.
If in doubt, please contact the FreeBSD ports E:&IE.

In situations like this, the variables described in the next sections can be set.

6.4.1. NO_PACKAGE

This variable indicates that we may not generate a binary package of the application. For instance,
the license may disallow binary redistribution, or it may prohibit distribution of packages created
from patched sources.

However, the port’s DISTFILES may be freely mirrored on FTP/HTTP. They may also be distributed
on a CD-ROM (or similar media) unless NO_CDROM is set as well.

121

https://cgit.freebsd.org/ports/tree/lang/mosml/pkg-descr
https://cgit.freebsd.org/ports/tree/www/seamonkey/pkg-descr
../uses/index.html#uses-libtool
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports

If the binary package is not generally useful, and the application must always be compiled from the
source code, use NO_PACKAGE. For example, if the application has configuration information that is
site specific hard coded into it at compile time, set NO_PACKAGE.

Set NO_PACKAGE to a string describing the reason why the package cannot be generated.

6.4.2. NO_CDROM

This variable alone indicates that, although we are allowed to generate binary packages, we may
put neither those packages nor the port’s DISTFILES onto a CD-ROM (or similar media) for resale.
However, the binary packages and the port’s DISTFILES will still be available via FTP/HTTP.

If this variable is set along with NO_PACKAGE, then only the port’s DISTFILES will be available, and only
via FTP/HTTP.

Set NO_CDROM to a string describing the reason why the port cannot be redistributed on CD-ROM. For
instance, use this if the port’s license is for "non-commercial" use only.

6.4.3. NOFETCHFILES

Files defined in NOFETCHFILES are not fetchable from any of MASTER_SITES. An example of such a file is
when the file is supplied on CD-ROM by the vendor.

Tools which check for the availability of these files on MASTER_SITES have to ignore these files and
not report about them.

6.4.4. RESTRICTED

Set this variable alone if the application’s license permits neither mirroring the application’s
DISTFILES nor distributing the binary package in any way.

Do not set NO_CDROM or NO_PACKAGE along with RESTRICTED, since the latter variable implies the former
ones.

Set RESTRICTED to a string describing the reason why the port cannot be redistributed. Typically, this
indicates that the port contains proprietary software and that the user will need to manually
download the DISTFILES, possibly after registering for the software or agreeing to accept the terms
of an EULA.

6.4.5. RESTRICTED_FILES

When RESTRICTED or NO_CDROM is set, this variable defaults to ${DISTFILES} ${PATCHFILES}, otherwise it
is empty. If only some of the distribution files are restricted, then set this variable to list them.

6.4.6. LEGAL_TEXT

If the port has legal concerns not addressed by the above variables, set LEGAL_TEXT to a string
explaining the concern. For example, if special permission was obtained for FreeBSD to redistribute
the binary, this variable must indicate so.

122

6.4.7. /usr/ports/LEGAL and LEGAL

A port which sets any of the above variables must also be added to /usr/ports/LEGAL. The first
column is a glob which matches the restricted distfiles. The second column is the port’s origin. The
third column is the output of make -VLEGAL.

6.4.8. Examples

The preferred way to state "the distfiles for this port must be fetched manually" is as follows:

.if lexists(${DISTDIR}/${DISTNAME}${EXTRACT _SUFX})

IGNORE= may not be redistributed because of licensing reasons. Please visit some-
website to accept their license and download ${DISTFILES} into ${DISTDIR}

.endif

This both informs the user, and sets the proper metadata on the user’s machine for use by
automated programs.

Note that this stanza must be preceded by an inclusion of bsd.port.pre.mk.

6.5. Building Mechanisms

6.5.1. Building Ports in Parallel

The FreeBSD ports framework supports parallel building using multiple make sub-processes, which
allows SMP systems to utilize all of their available CPU power, allowing port builds to be faster and
more effective.

This is achieved by passing -jX flag to make(1) running on vendor code. This is the default build
behavior of ports. Unfortunately, not all ports handle parallel building well and it may be required
to explicitly disable this feature by adding the MAKE_JOBS_UNSAFE=yes variable. It is used when a port
is known to be broken with -jX due to race conditions causing intermittent build failures.

When setting MAKE_JOBS_UNSAFE, it is very important to explain either with a

o comment in the Makefile, or at least in the commit message, why the port does not
build when enabling. Otherwise, it is almost impossible to either fix the problem,
or test if it has been fixed when committing an update at a later date.

6.5.2. make, gmake, and imake

Several differing make implementations exist. Ported software often requires a particular
implementation, like GNU "make *, known in FreeBSD as gmake.

If the port uses GNU make, add gmake to USES.

MAKE_CMD can be used to reference the specific command configured by the USES setting in the port’s
Makefile. Only use MAKE_CMD within the application Makefiles in WRKSRC to call the make
implementation expected by the ported software.

123

https://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html

If the port is an X application that uses imake to create Makefiles from Imakefiles, set USES= imake.
See the USES=1imake section of Using USES Macros for more details.

If the port’s source Makefile has something other than all as the main build target, set ALL_TARGET
accordingly. The same goes for install and INSTALL_TARGET.

6.5.3. configure Script

If the port uses the configure script to generate Makefile from Makefile.in, set GNU_CONFIGURE=yes. To
give extra arguments to the configure script (the default argument is --prefix=${PREFIX}
--infodir=${PREFIX}/${INFO_PATH} --mandir=${MANPREFIX}/man --build=${CONFIGURE_TARGET}), set
those extra arguments in CONFIGURE_ARGS. Extra environment variables can be passed using
CONFIGURE_ENV.

£ 9. Variables for Ports That Use configure

Variable Means

GNU_CONFIGURE The port uses configure script to prepare build.

HAS_CONFIGURE Same as GNU_CONFIGURE, except default configure
target is not added to CONFIGURE_ARGS.

CONFIGURE_ARGS Additional arguments passed to configure script.

CONFIGURE_ENV Additional environment variables to be set for

configure script run.

CONFIGURE_TARGET Override default configure target. Default value
is ${MACHINE_ARCH}-portbld-freebsd${0SREL}.

6.5.4. Using cmake
For ports that use CMake, define USES= cmake.

% 10. Variables for Ports That Use cmake

Variable Means

CMAKE _ARGS Port specific CMake flags to be passed to the
cmake binary.

CMAKE_ON For each entry in CMAKE_ON, an enabled boolean
value is added to CMAKE _ARGS. See CMAKE _ON and
CMAKE _OFF.

CMAKE_OFF For each entry in CMAKE_OFF, a disabled boolean
value is added to CMAKE ARGS. See CMAKE ON and
CMAKE _OFF.

CMAKE_BUILD_TYPE Type of build (CMake predefined build profiles).

Default is Release, or Debug if WITH_DEBUG is set.
CMAKE_SOURCE _PATH Path to the source directory. Default is ${WRKSRC}.

124

../uses/index.html#uses-imake
../uses/index.html#uses
../uses/index.html#uses
../uses/index.html#uses

Variable Means

CONFIGURE_ENV Additional environment variables to be set for
the cmake binary.

Z 11. Variables the Users Can Define for cmake Builds

Variable Means

CMAKE_NOCOLOR Disables color build output. Default not set,
unless BATCH or PACKAGE_BUILDING are set.

CMake supports these build profiles: Debug, Release, RelWithDebInfo and MinSizeRel. Debug and
Release profiles respect system *FLAGS, RelWithDebInfo and MinSizeRel will set CFLAGS to -02 -g and
-0s -DNDEBUG correspondingly. The lower-cased value of CMAKE_BUILD_TYPE is exported to PLIST_SUB
and must be used if the port installs *cmake depending on the build type (see devel/kf5-kcrash for
an example). Please note that some projects may define their own build profiles and/or force
particular build type by setting CMAKE_BUILD_TYPE in CMakeLists.txt. To make a port for such a
project respect CFLAGS and WITH_DEBUG, the CMAKE_BUILD_TYPE definitions must be removed from those
files.

Most CMake-based projects support an out-of-source method of building. The out-of-source build
for a port is the default setting. An in-source build can be requested by using the :insource suffix.
With out-of-source builds, CONFIGURE _WRKSRC, BUILD_WRKSRC and INSTALL WRKSRC will be set to
${WRKDIR}/.build and this directory will be used to keep all files generated during configuration and
build stages, leaving the source directory intact.

{5l 54. USES= cmake Example
This snippet demonstrates the use of CMake for a port. CMAKE_SOURCE_PATH is not usually

required, but can be set when the sources are not located in the top directory, or if only a
subset of the project is intended to be built by the port.

USES= cmake
CMAKE_SOURCE_PATH= ${WRKSRC}/subproject

125

https://cgit.freebsd.org/ports/tree/devel/kf5-kcrash/pkg-descr

{5l 55. CMAKE_ON and CMAKE _OFF

When adding boolean values to CMAKE_ARGS, it is easier to use the CMAKE_ON and CMAKE_OFF
variables instead. This:

CMAKE_ON= VAR1 VAR2
CMAKE_OFF= VAR3

Is equivalent to:

CMAKE_ARGS= -DVAR1:BOOL=TRUE -DVAR2:BOOL=TRUE -DVAR3:BOOL=FALSE

This is only for the default values off CMAKE_ARGS. The helpers described in
o OPT_CMAKE_BOOL and OPT_CMAKE_BOOL_OFF use the same semantics, but for
optional values.

6.5.5. Using scons
If the port uses SCons, define USES=scons.

To make third party SConstruct respect everything that is passed to SCons in the environment (that
is, most importantly, CC/CXX/CFLAGS/CXXFLAGS), patch SConstruct so build Environment is constructed
like this:

env = Environment(**ARGUMENTS)

It may be then modified with env.Append and env.Replace.

6.5.6. Building Rust Applications with cargo
For ports that use Cargo, define USES=carqgo.

£ 12. Variables the Users Can Define for carqgo Builds
Variable Default Description

CARGO_CRATES List of crates the port depends
on. Each entry needs to have a
format like cratename-semver for
example, 1ibc-0.2.40. Port
maintainers can generate this
list from Cargo.lock using make
cargo-crates. Manually
bumping crate versions is
possible but be mindful of
transitive dependencies.

126

../makefiles/index.html#options-cmake_bool
../makefiles/index.html#options-cmake_bool
../makefiles/index.html#options-cmake_bool

Variable
CARGO_FEATURES

CARGO_CARGOTOML

CARGO_CARGOLOCK

CARGO_ENV

RUSTFLAGS

CARGO_CONFIGURE
CARGO_UPDATE_ARGS

CARGO_BUILDDEP

CARGO_CARGO_BIN
CARGO_BUILD
CARGO_BUILD_ARGS

CARGO_INSTALL
CARGO_INSTALL_ARGS

Default

${WRKSRC}/Cargo.toml

${WRKSRC}/Cargo.lock

yes

yes

${LOCALBASE}/bin/cargo

yes

yes

Description

List of application features to
build (space separated list). To
deactivate all default features
add the special token --no
-default-features to
CARGO_FEATURES. Manually
passing it to CARGO_BUILD_ARGS,
CARGO_INSTALL_ARGS, and
CARGO_TEST_ARGS is not needed.

The path to the Cargo.toml to
use.

The path to the Cargo.lock to
use for make cargo-crates. Itis
possible to specify more than
one lock file when necessary.

A list of environment variables
to pass to Cargo similar to
MAKE_ENV.

Flags to pass to the Rust
compiler.

Use the default do-configure.

Extra arguments to pass to
Cargo during the configure
phase. Valid arguments can be
looked up with cargo update
--help.

Add a build dependency on
lang/rust.

Location of the cargo binary.
Use the default do-build.

Extra arguments to pass to
Cargo during the build phase.
Valid arguments can be looked
up with cargo build --help.

Use the default do-install.

Extra arguments to pass to
Cargo during the install phase.
Valid arguments can be looked
up with cargo install --help.

127

https://cgit.freebsd.org/ports/tree/lang/rust/pkg-descr

Variable Default
CARGO_INSTALL PATH

CARGO_TEST yes
CARGO_TEST_ARGS

CARGO_TARGET_DIR ${WRKDIR}/target
CARGO_DIST_SUBDIR rust/crates
CARGO_VENDOR_DIR ${WRKSRC}/cargo-crates
CARGO_USE_GITHUB no

CARGO_USE_GITLAB no

128

Description

Path to the crate to install. This
is passed to cargo install via its
--path argument. When
multiple paths are specified
cargo install is run multiple
times.

Use the default do-test.

Extra arguments to pass to
Cargo during the test phase.
Valid arguments can be looked
up with cargo test --help.

Location of the cargo output
directory.

Directory relative to DISTDIR
where the crate distribution
files will be stored.

Location of the vendor
directory where all crates will
be extracted to. Try to keep this
under PATCH_WRKSRC, so that
patches can be applied easily.

Enable fetching of crates locked
to specific Git commits on
GitHub via GH_TUPLE. This will
try to patch all Cargo.toml
under WRKDIR to point to the
offline sources instead of
fetching them from a Git
repository during the build.

Same as CARGO_USE_GITHUB but
for GitLab instances and
GL_TUPLE.

{5l 56. Creating a Port for a Simple Rust Application

Creating a Cargo based port is a three stage process. First we need to provide a ports template
that fetches the application distribution file:

PORTNAME= tokei
DISTVERSIONPREFIX= v
DISTVERSION= 7.0.2
CATEGORIES= devel

MAINTAINER= tobik@FreeBSD.org
COMMENT= Display statistics about your code

USES= cargo
USE_GITHUB= yes
GH_ACCOUNT= Aaronepower

.include <bsd.port.mk>

Generate an initial distinfo:

% make makesum

=> Aaronepower-tokei-v7.0.2_GHO.tar.gz doesn't seem to exist in
/usr/ports/distfiles/.

=> Attempting to fetch
https://codeload.github.com/Aaronepower/tokei/tar.qgz/v7.0.2?dummy=/Aaronepower -
tokei-v7.0.2_GHO.tar.gz

fetch:
https://codeload.github.com/Aaronepower/tokei/tar.qgz/v7.0.27dummy=/Aaronepower -
tokei-v7.0.2_GHO.tar.gz: size of remote file is not known
Aaronepower-tokei-v7.0.2_GHO.tar.gz 45 kB 239 kBps 00m00@s

Now the distribution file is ready to use and we can go ahead and extract crate dependencies
from the bundled Cargo.lock:

% make cargo-crates

CARGO_CRATES= aho-corasick-0.6.4 \
ansi_term-0.11.0 \
arrayvec-0.4.7 \
atty-0.2.9 \
bitflags-1.0.1 \
byteorder-1.2.2 \
[...]

The output of this command needs to be pasted directly into the Makefile:

129

PORTNAME= tokei
DISTVERSIONPREFIX= v
DISTVERSION= 7.0.2
CATEGORIES= devel

MAINTAINER= tobik@FreeBSD.org
COMMENT= Display statistics about your code

USES= cargo
USE_GITHUB= yes
GH_ACCOUNT= Aaronepower

CARGO_CRATES= aho-corasick-0.6.
ansi_term-0.11.
arrayvec-0.4.7 \
atty-0.2.9 \
bitflags-1.0.1 \
byteorder-1.2.2 \

[...]

4\
\

.include <bsd.port.mk>

distinfo needs to be regenerated to contain all the crate distribution files:

130

% make makesum

=> rust/crates/aho-corasick-0.6.4.tar.gz doesn't seem to exist in
/usr/ports/distfiles/.

=> Attempting to fetch https://crates.io/api/v1/crates/aho-
corasick/0.6.4/download?dummy=/rust/crates/aho-corasick-0.6.4.tar.gz
rust/crates/aho-corasick-0.6.4.tar.gz 100% of 24 kB 6139 kBps 00m00s
=> rust/crates/ansi_term-0.11.0.tar.gz doesn't seem to exist in
/usr/ports/distfiles/.

=> Attempting to fetch
https://crates.io/api/v1/crates/ansi_term/0.11.0/download?dummy=/rust/crates/ansi_
term-0.11.0.tar.gz

rust/crates/ansi_term-0.11.0.tar.gz 100% of 16 kB 21 MBps 00m@0s
=> rust/crates/arrayvec-0.4.7.tar.gz doesn't seem to exist in
/usr/ports/distfiles/.

=> Attempting to fetch
https://crates.io/api/v1/crates/arrayvec/0.4.7/download?dummy=/rust/crates/arrayve
c-0.4.7.tar.gz

rust/crates/arrayvec-0.4.7.tar.gz 100% of 22 kB 3237 kBps 00m@0s
=> rust/crates/atty-0.2.9.tar.gz doesn't seem to exist in /usr/ports/distfiles/.
=> Attempting to fetch https://crates.io/api/v1/crates/atty/0.2.9/download?dummy
=/rust/crates/atty-0.2.9.tar.gz

rust/crates/atty-0.2.9.tar.gz 100% of 5898 B 81 MBps 00m@0s
=> rust/crates/bitflags-1.0.1.tar.gz doesn't seem to exist in
/usr/ports/distfiles/.

[...]

The port is now ready for a test build and further adjustments like creating a plist, writing a
description, adding license information, options, etc. as normal.

If you are not testing your port in a clean environment like with Poudriere, remember to run
make clean before any testing.

{5l 57. Enabling Additional Application Features

Some applications define additional features in their Cargo.toml. They can be compiled in by
setting CARGO_FEATURES in the port.

Here we enable Tokei’s json and yaml features:

CARGO_FEATURES= json yaml

131

{5l 58. Encoding Application Features As Port Options

An example [features] section in Cargo.toml could look like this:

[features]

pulseaudio_backend = ["librespot-playback/pulseaudio-backend"]
portaudio_backend = ["librespot-playback/portaudio-backend"]
default = ["pulseaudio_backend"]

pulseaudio_backend is a default feature. It is always enabled unless we explicitly turn off
default features by adding --no-default-features to CARGO_FEATURES. Here we turn the
portaudio_backend and pulseaudio_backend features into port options:

CARGO_FEATURES= --no-default-features
OPTIONS DEFINE= PORTAUDIO PULSEAUDIO

PORTAUDIO_VARS= CARGO_FEATURES+=portaudio_backend
PULSEAUDIO_VARS= CARGO_FEATURES+=pulseaudio_backend

{5 59. Listing Crate Licenses

Crates have their own licenses. It is important to know what they are when adding a LICENSE
block to the port (see Licenses). The helper target cargo-crates-licenses will try to list all the
licenses of all crates defined in CARGO_CRATES.

% make cargo-crates-licenses
aho-corasick-0.6.4 Unlicense/MIT
ansi_term-0.11.0 MIT

arrayvec-0.4.7 MIT/Apache-2.0
atty-0.2.9 MIT
bitflags-1.0.1 MIT/Apache-2.0
byteorder-1.2.2 Unlicense/MIT
[...]

The license names make cargo-crates-licenses outputs are SPDX 2.1 licenses

o expression which do not match the license names defined in the ports
framework. They need to be translated to the names from Predefined License

List.

6.5.7. Using meson

For ports that use Meson, define USES=meson.

132

../makefiles/index.html#licenses
../makefiles/index.html#licenses-license-list
../makefiles/index.html#licenses-license-list

%% 13. Variables for Ports That Use meson
Variable Description

MESON_ARGS Port specific Meson flags to be passed to the
meson binary.

MESON_BUILD_DIR Path to the build directory relative to WRKSRC.
Defaultis build.

{5 60. USES=meson Example

This snippet demonstrates the use of Meson for a port.

USES= meson
MESON_ARGS= -Dfoo=enabled

6.5.8. Building Go Applications

For ports that use Go, define USES=go. Refer to go for a list of variables that can be set to control the
build process.

133

../uses/index.html#uses-go

{5l 61. Creating a Port for a Go Modules Based Application

In most cases, it is sufficient to set the GO_MODULE variable to the value specified by the module
directive in go.mod:

PORTNAME= hey

PORTVERSION= 0.1.4

DISTVERSIONPREFIX= v

CATEGORIES= benchmarks

MAINTAINER= dmgk@FreeBSD.org

COMMENT= Tiny program that sends some load to a web application
LICENSE= APACHE20

LICENSE_FILE= ${WRKSRC}/LICENSE

USES= go:modules
GO_MODULE= github.com/rakyll/hey

PLIST_FILES= bin/hey

.include <bsd.port.mk>
If the "easy" way is not adequate or more control over dependencies is needed, the full porting
process is described below.

Creating a Go based port is a five stage process. First we need to provide a ports template that
fetches the application distribution file:

PORTNAME= ghq
DISTVERSIONPREFIX= v
DISTVERSION= 0.12.5
CATEGORIES= devel

MAINTAINER= tobik@FreeBSD.org
COMMENT= Remote repository management made easy

USES= go:modules
USE_GITHUB= yes
GH_ACCOUNT= motemen

.include <bsd.port.mk>

Generate an initial distinfo:

134

% make makesum

===> License MIT accepted by the user

=> motemen-ghq-v@.12.5_GHO.tar.gz doesn't seem to exist in /usr/ports/distfiles/.
=> Attempting to fetch
https://codeload.github.com/motemen/ghq/tar.gz/v0.12.5?dummy=/motemen-ghq-
v0.12.5_GHO.tar.gz

fetch: https://codeload.github.com/motemen/ghq/tar.gz/v0.12.5?dummy=/motemen-ghg-

v0.12.5_GHO.tar.gz: size of remote file is not known
motemen-ghg-v@.12.5_GHO.tar.gz 32 kB 177 kBps 00s

Now the distribution file is ready to use and we can extract the required Go module

dependencies. This step requires having ports-mgmt/modules2tuple installed:

% make gomod-vendor

[...]

GH_TUPLE= \

Songmu:gitconfig:v@.0.2:songmu_gitconfig/vendor/github.com/Songmu/gitconfig \
daviddengcn:go-

colortext:186a3d44e920:daviddengcn_go_colortext/vendor/github.com/daviddengcn/go-

colortext \
go-yaml:yaml:v2.2.2:go_yaml_yaml/vendor/gopkg.in/yaml.v2 \
golang:net:3ec191127204:golang_net/vendor/golang.org/x/net \
golang:sync:112230192c58:golang_sync/vendor/golang.org/x/sync \
golang:xerrors:3ee3066db522:golang_xerrors/vendor/golang.org/x/xerrors \
motemen:go-

colorine:45d19169413a:motemen_go_colorine/vendor/github.com/motemen/go-colorine \
urfave:cli:v1.20.0:urfave_cli/vendor/github.com/urfave/cli

The output of this command needs to be pasted directly into the Makefile:

135

https://cgit.freebsd.org/ports/tree/ports-mgmt/modules2tuple/pkg-descr

PORTNAME= ghg
DISTVERSIONPREFIX= v
DISTVERSION= 0.12.5
CATEGORIES= devel

MAINTAINER= tobik@FreeBSD.org
COMMENT= Remote repository management made easy

USES= go:modules

USE_GITHUB= yes

GH_ACCOUNT= motemen

GH_TUPLE=

Songmu:gitconfig:v@.0.2:songmu_gitconfig/vendor/github.com/Songmu/gitconfig \
daviddengcn:go-

colortext:186a3d44e920:daviddengcn_go_colortext/vendor/github.com/daviddengen/go-

colortext \
go-yaml:yaml:v2.2.2:qo_yaml_yaml/vendor/gopkg.in/yaml.v2 \
golang:net:3ec191127204:golang_net/vendor/golang.org/x/net \
golang:sync:112230192c58:golang_sync/vendor/golang.org/x/sync \
golang:xerrors:3ee3066db522:golang_xerrors/vendor/golang.org/x/xerrors \
motemen:go-

colorine:45d19169413a:motemen_go_colorine/vendor/github.com/motemen/go-colorine \
urfave:cli:v1.20.0:urfave_cli/vendor/github.com/urfave/cli

.include <bsd.port.mk>

distinfo needs to be regenerated to contain all the distribution files:

136

% make makesum

=> Songmu-gitconfig-v@.0.2_GHO.tar.gz doesn't seem to exist in
/usr/ports/distfiles/.

=> Attempting to fetch
https://codeload.github.com/Songmu/gitconfig/tar.gz/v0.0.2?dummy=/Songmu-
gitconfig-v0.0.2_GHO.tar.qgz

fetch: https://codeload.github.com/Songmu/gitconfig/tar.gz/v@.0.2?dummy=/Songmu-
gitconfig-v0.0.2_GHO.tar.gz: size of remote file is not known
Songmu-gitconfig-v0.0.2_GHO.tar.gz 5662 B 936 kBps 00s
=> daviddengcn-go-colortext-186a3d44e920_GHO.tar.gz doesn't seem to exist in
/usr/ports/distfiles/.

=> Attempting to fetch https://codeload.github.com/daviddengcn/go-
colortext/tar.gz/186a3d44e9207dummy=/daviddengcn-go-colortext-
186a3d44e920_GHO.tar.gz

fetch: https://codeload.github.com/daviddengcn/qgo-
colortext/tar.gz/186a3d44e9207dummy=/daviddengcn-go-colortext-
186a3d44e920_GHO.tar.gz: size of remote file is not known
daviddengcn-go-colortext-186a3d44e920_GHO. tar. 4534 B 1098 kBps 00s
[...]

The port is now ready for a test build and further adjustments like creating a plist, writing a
description, adding license information, options, etc. as normal.

If you are not testing your port in a clean environment like with Poudriere, remember to run
make clean before any testing.

5] 62. Setting Output Binary Name or Installation Path

Some ports need to install the resulting binary under a different name or to a path other than
the default ${PREFIX}/bin. This can be done by using 60_TARGET tuple syntax, for example:

GO_TARGET= ./cmd/ipfs:ipfs-go
will install ipfs binary as ${PREFIX}/bin/ipfs-go and
GO_TARGET= ./dnscrypt-proxy:${PREFIX}/sbin/dnscrypt-proxy

will install dnscrypt-proxy to ${PREFIX}/sbin.

6.5.9. Building Haskell Applications with cabal

For ports that use Cabal, build system defines USES=cabal. Refer to cabal for a list of variables that
can be set to control the build process.

137

../uses/index.html#uses-cabal

{5l 63. Creating a Port for a Hackage-hosted Haskell Application

When preparing a Haskell Cabal port, the devel/hs-cabal-install program is required, so make
sure it is installed beforehand. First we need to define common ports variables that allows
cabal-install to fetch the package distribution file:

PORTNAME= ShellCheck
DISTVERSION= 0.6.0
CATEGORIES= devel

MAINTAINER= haskell@FreeBSD.org
COMMENT= Shell script analysis tool

USES= cabal

.include <bsd.port.mk>
This minimal Makefile allows us to fetch the distribution file:

% make cabal-extract

[...]

Downloading the latest package list from hackage.haskell.org

cabal get ShellCheck-0.6.0

Downloading ShellCheck-0.6.0

Downloaded ShellCheck-0.6.0
0.6.0

Unpacking to ShellCheck- /

Now we have ShellCheck.cabal package description file, which allows us to fetch all package’s
dependencies, including transitive ones:

% make cabal-extract-deps

[...]

Resolving dependencies...

Downloading base-orphans-0.8.2
Downloaded base-orphans-0.8.2
Downloading primitive-0.7.0.0
Starting base-orphans-0.8.2 (1ib)
Building base-orphans-0.8.2 (1ib)
Downloaded primitive-0.7.0.0
Downloading dlist-0.8.0.7

[...]

As a side effect, the package’s dependencies are also compiled, so the command may take some
time. Once done, a list of required dependencies can generated:

138

https://cgit.freebsd.org/ports/tree/devel/hs-cabal-install/pkg-descr

% make make-use-cabal
USE_CABAL=QuickCheck-2.12.6.1 \
hashable-1.3.0.0 \
integer-logarithms-1.0.3 \
[...]

Haskell packages may contain revisions, just like FreeBSD ports. Revisions can affect only
.cabal files, but it is still important to pull them in. To check USE_CABAL items for available
revision updates, run following command:

% make make-use-cabal-revs
USE_CABAL=QuickCheck-2.12.6.1_1 \
hashable-1.3.0.0 \
integer-logarithms-1.0.3_2 \
[...]

Note additional version numbers after _ symbol. Put newly generated USE_CABAL list instead of
an old one.

Finally, distinfo needs to be regenerated to contain all the distribution files:

% make makesum

=> ShellCheck-0.6.0.tar.gz doesn't seem to exist in
/usr/local/poudriere/ports/qgit/distfiles/cabal.

=> Attempting to fetch https://hackage.haskell.org/package/ShellCheck-
0.6.0/ShellCheck-0.6.0.tar.gz

ShellCheck-0.6.0.tar.gz 136 kB 642 kBps 00s
=> QuickCheck-2.12.6.1/QuickCheck-2.12.6.1.tar.gz doesn't seem to exist in
/usr/local/poudriere/ports/qgit/distfiles/cabal.

=> Attempting to fetch https://hackage.haskell.org/package/QuickCheck-
2.12.6.1/QuickCheck-2.12.6.1.tar.gz
QuickCheck-2.12.6.1/QuickCheck-2.12.6.1.tar.gz 65 kB 361 kBps 00s
[...]

The port is now ready for a test build and further adjustments like creating a plist, writing a
description, adding license information, options, etc. as normal.

If you are not testing your port in a clean environment like with Poudriere, remember to run
make clean before any testing.

6.6. Using GNU Autotools

If a port needs any of the GNU Autotools software, add USES=autoreconf. See autoreconf for more
information.

139

../uses/index.html#uses-autoreconf

6.7. Using GNU gettext

6.7.1. Basic Usage

If the port requires gettext, set USES= gettext, and the port will inherit a dependency on libintl.so
from devel/gettext. Other values for gettext usage are listed in USES=gettext.

A rather common case is a port using gettext and configure. Generally, GNU configure should be

able to locate gettext automatically.

USES= gettext
GNU_CONFIGURE= yes

If it ever fails to, hints at the location of gettext can be passed in CPPFLAGS and LDFLAGS using
localbase as follows:

USES= gettext localbase:1dflags
GNU_CONFIGURE= yes

6.7.2. Optional Usage

Some software products allow for disabling NLS. For example, through passing --disable-nls to
configure. In that case, the port must use gettext conditionally, depending on the status of the NLS
option. For ports of low to medium complexity, use this idiom:

GNU_CONFIGURE= yes
OPTIONS_DEFINE= NLS
OPTIONS_SUB= yes
NLS_USES= gettext

NLS_CONFIGURE_ENABLE= nls

.include <bsd.port.mk>

Or using the older way of using options:

140

https://cgit.freebsd.org/ports/tree/devel/gettext/pkg-descr
../uses/index.html#uses-gettext

GNU_CONFIGURE= yes
OPTIONS_DEFINE= NLS
.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MNLS}

USES+= gettext
PLIST_SUB+= NLS=""

.else

CONFIGURE _ARGS+= --disable-nls
PLIST SUB+= NLS="@comment "
.endif

.include <bsd.port.mk>

The next item on the to-do list is to arrange so that the message catalog files are included in the
packing list conditionally. The Makefile part of this task is already provided by the idiom. It is
explained in the section on advanced pkg-plist practices. In a nutshell, each occurrence of %%NLS%%
in pkg-plist will be replaced by " @comment " if NLS is disabled, or by a null string if NLS is
enabled. Consequently, the lines prefixed by ‘%%NLS%% will become mere comments in the final
packing list if NLS is off; otherwise the prefix will be just left out. Then insert %%NLS%% before each
path to a message catalog file in pkg-plist. For example:

S%%share/locale/fr/LC_MESSAGES/foobar.mo
S%%share/locale/no/LC_MESSAGES/foobar.mo

In high complexity cases, more advanced techniques may be needed, such as dynamic packing list
generation.

6.7.3. Handling Message Catalog Directories

There is a point to note about installing message catalog files. The target directories for them, which
reside under LOCALBASE/share/locale, must not be created and removed by a port. The most
popular languages have their respective directories listed in PORTSDIR/Templates/BSD.local.dist.
The directories for many other languages are governed by the devel/gettext port. Consult its pkg-
plist and see whether the port is going to install a message catalog file for a unique language.

6.8. Using Perl

If MASTER_SITES is set to CPAN, the correct subdirectory is usually selected automatically. If the default
subdirectory is wrong, CPAN/Module can be used to change it. MASTER_SITES can also be set to the old
MASTER_SITE_PERL_CPAN, then the preferred value of MASTER_SITE_SUBDIR is the top-level hierarchy
name. For example, the recommended value for p5-Module-Name is Module. The top-level hierarchy
can be examined at cpan.org. This keeps the port working when the author of the module changes.

The exception to this rule is when the relevant directory does not exist or the distfile does not exist

141

../plist/index.html#plist-sub
../plist/index.html#plist-sub
../plist/index.html#plist-sub
../plist/index.html#plist-dynamic
../plist/index.html#plist-dynamic
https://cgit.freebsd.org/ports/tree/devel/gettext/pkg-descr
http://cpan.org/modules/by-module/

in that directory. In such case, using author’s id as MASTER_SITE_SUBDIR is allowed. The CPAN:AUTHOR
macro can be used, which will be translated to the hashed author directory. For example,
CPAN: AUTHOR will be converted to authors/id/A/AU/AUTHOR.

When a port needs Perl support, it must set USES=per15 with the optional USE_PERL5 described in the
perl5 USES description.

2 14. Read-Only Variables for Ports That Use Perl
Read only variables Means

PERL The full path of the Perl 5 interpreter, either in
the system or installed from a port, but without
the version number. Use this when the software
needs the path to the Perl interpreter. To replace
"#!"lines in scripts, use shebangfix.

PERL_VERSION The full version of Perl installed (for example,
5.8.9).
PERL_LEVEL The installed Perl version as an integer of the

form MNNNPP (for example, 500809).

PERL_ARCH Where Perl stores architecture dependent
libraries. Defaults to ${ARCH}-freebsd.

PERL_PORT Name of the Perl port that is installed (for
example, perl1h).

SITE_PERL Directory name where site specific Perl
packages go. This value is added to PLIST_SUB.

Ports of Perl modules which do not have an official website must link to cpan.org
o in the WWW line of pkg-descr. The preferred URL form is http://search.cpan.org/
dist/Module-Name/ (including the trailing slash).

Do not use ${SITE_PERL} in dependency declarations. Doing so assumes that
o perl5.mk has been included, which is not always true. Ports depending on this port

will have incorrect dependencies if this port’s files move later in an upgrade. The

right way to declare Perl module dependencies is shown in the example below.

{5 64. Perl Dependency Example

p5-10-Tee>=0.64:devel/p5-10-Tee

For Perl ports that install manual pages, the macro PERL5_MAN3 and PERL5_MAN1 can be used inside
pkg-plist. For example,

142

../uses/index.html#uses-perl5
../uses/index.html#uses-perl5
../uses/index.html#uses-shebangfix
http://search.cpan.org/dist/Module-Name/
http://search.cpan.org/dist/Module-Name/
http://search.cpan.org/dist/Module-Name/
http://search.cpan.org/dist/Module-Name/
http://search.cpan.org/dist/Module-Name/

lib/per15/5.14/man/man1/event. 1.9z
lib/per15/5.14/man/man3/AnyEvent::13.3.9z

can be replaced with

%%PERL5_MAN1%%/event.1.gz
PERL5_MAN3%%/AnyEvent::13.3.9z

[
%

o

o There are no PERL5_MAN_x_ macros for the other sections (x in 2 and 4 to 9) because
those get installed in the regular directories.

{5 65. A Port Which Only Requires Perl to Build

As the default USE_PERLS5 value is build and run, set it to:

USES= perl5
USE_PERL5= build

{5l 66. A Port Which Also Requires Perl to Patch

From time to time, using sed(1) for patching is not enough. When using perl(1) is easier, use:

USES= perl5
USE_PERL5= patch build run

5 67. A Perl Module Which Needs ExtUtils: :MakeMaker to Build

Most Perl modules come with a Makefile.PL configure script. In this case, set:

USES= perl5
USE_PERL5= configure

143

https://www.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=perl&sektion=1&format=html

5l 68. A Perl Module Which Needs Module: :Build to Build

When a Perl module comes with a Build.PL configure script, it can require Module::Build, in
which case, set

USES= perl5
USE_PERL5= modbuild

If it instead requires Module::Build::Tiny, set

USES= perl5
USE_PERL5= modbuildtiny

6.9. Using X11

6.9.1. X.Org Components

The X11 implementation available in The Ports Collection is X.0rg. If the application depends on X
components, add USES= xorg and set USE_XORG to the list of required components. A full list can be
found in xorg.

The Mesa Project is an effort to provide free OpenGL implementation. To specify a dependency on
various components of this project, use USES= gl and USE_GL. See gl for a full list of available
components. For backwards compatibility, the value of yes maps to glu.

{5l 69. USE_XORG Example

USES= gl xorg
USE_GL= glu
USE_XORG= xrender xft xkbfile xt xaw

% 15. Variables for Ports That Use X

USES= imake The port uses imake.
XMKMF Set to the path of xmkmf if not in the PATH. Defaults
to xmkmf -a.

{5l 70. Using X11-Related Variables

Use some X11 libraries
USES= Xorg
USE_XORG= x11 xpm

144

../uses/index.html#uses-xorg
../uses/index.html#uses-gl

6.9.2. Ports That Require Motif

If the port requires a Motif library, define USES= motif in the Makefile. Default Motif
implementation is x11-toolkits/open-motif. Users can choose x11-toolkits/lesstif instead by setting
WANT _LESSTIF in their make.conf.

MOTIFLIB will be set by motif.mk to reference the appropriate Motif library. Please patch the source
of the port to use ${MOTIFLIB} wherever the Motif library is referenced in the original Makefile or
Imakefile.

There are two common cases:

« If the port refers to the Motif library as -1Xm in its Makefile or Imakefile, substitute ${MOTIFLIB}
for it.

o If the port uses XmClientLibs in its Imakefile, change it to ${MOTIFLIB} ${XTOOLLIB} ${XLIB}.

Note that MOTIFLIB (usually) expands to -L/usr/local/lib -1Xm -1Xp or /usr/local/lib/1libXm.a, so
there is no need to add -L or -1 in front.

6.9.3. X11 Fonts

If the port installs fonts for the X Window System, put them in LOCALBASE/lib/X11/fonts/local.

6.9.4. Getting a Fake DISPLAY with Xvfb

Some applications require a working X11 display for compilation to succeed. This poses a problem
for machines that operate headless. When this variable is used, the build infrastructure will start
the virtual framebuffer X server. The working DISPLAY is then passed to the build. See USES=display
for the possible arguments.

USES= display

6.9.5. Desktop Entries

Desktop entries (a Freedesktop standard) provide a way to automatically adjust desktop features
when a new program is installed, without requiring user intervention. For example, newly-installed
programs automatically appear in the application menus of compatible desktop environments.
Desktop entries originated in the GNOME desktop environment, but are now a standard and also
work with KDE and Xfce. This bit of automation provides a real benefit to the user, and desktop
entries are encouraged for applications which can be used in a desktop environment.

6.9.5.1. Using Predefined .desktop Files

Ports that include predefined *desktop must include those files in pkg-plist and install them in the
$LOCALBASE/share/applications directory. The INSTALL_DATA macro is useful for installing these
files.

145

https://cgit.freebsd.org/ports/tree/x11-toolkits/open-motif/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-toolkits/lesstif/pkg-descr
../uses/index.html#uses-display
http://standards.freedesktop.org/desktop-entry-spec/latest/
../makefiles/index.html#install-macros
../makefiles/index.html#install-macros

6.9.5.2. Updating Desktop Database

If a port has a MimeType entry in its portname.desktop, the desktop database must be updated
after install and deinstall. To do this, define USES= desktop-file-utils.

6.9.5.3. Creating Desktop Entries with DESKTOP_ENTRIES

Desktop entries can be easily created for applications by using DESKTOP_ENTRIES. A file named
name.desktop will be created, installed, and added to pkg-plist automatically. Syntax is:

DESKTOP_ENTRIES= “NAME" "COMMENT" "ICON" "COMMAND" "CATEGORY" StartupNotify

The list of possible categories is available on the Freedesktop website. StartupNotify indicates
whether the application is compatible with startup notifications. These are typically a graphic
indicator like a clock that appear at the mouse pointer, menu, or panel to give the user an
indication when a program is starting. A program that is compatible with startup notifications
clears the indicator after it has started. Programs that are not compatible with startup notifications
would never clear the indicator (potentially confusing and infuriating the user), and must have
StartupNotify set to false so the indicator is not shown at all.

Example:

DESKTOP_ENTRIES= "ToME" "Roguelike game based on JRR Tolkien's work" \
"${DATADIR}/xtra/graf/tome-128.png" \
“tome -v -g" "Application;Game;RolePlaying;" \
false

6.10. Using GNOME

6.10.1. Introduction

This chapter explains the GNOME framework as used by ports. The framework can be loosely
divided into the base components, GNOME desktop components, and a few special macros that
simplify the work of port maintainers.

6.10.2. Using USE_GNOME

Adding this variable to the port allows the use of the macros and components defined in
bsd.gnome.mk. The code in bsd.gnome.mk adds the needed build-time, run-time or library
dependencies or the handling of special files. GNOME applications under FreeBSD use the USE_GNOME
infrastructure. Include all the needed components as a space-separated list. The USE_GNOME
components are divided into these virtual lists: basic components, GNOME 3 components and
legacy components. If the port needs only GTK3 libraries, this is the shortest way to define it:

USE_GNOME= gtk30

146

http://standards.freedesktop.org/menu-spec/latest/apa.html

USE_GNOME components automatically add the dependencies they need. Please see GNOME
Components for an exhaustive list of all USE_GNOME components and which other components they
imply and their dependencies.

Here is an example Makefile for a GNOME port that uses many of the techniques outlined in this
document. Please use it as a guide for creating new ports.

#t $FreeBSD$

PORTNAME= regexxer
DISTVERSION= 0.10
CATEGORIES= devel textproc gnome
MASTER_SITES= GNOME

MAINTAINER= kwm@FreeBSD.org
COMMENT= Interactive tool for performing search and replace operations

USES= gettext gmake localbase:ldflags pathfix pkgconfig tar:xz
GNU_CONFIGURE= yes
USE_GNOME= gnomeprefix intlhack gtksourceviewmm3

GLIB_SCHEMAS= org.regexxer.gschema.xml

.include <bsd.port.mk>

o The USE_GNOME macro without any arguments does not add any dependencies to the
port. USE_GNOME cannot be set after bsd.port.pre.mk.

6.10.3. Variables

This section explains which macros are available and how they are used. Like they are used in the
above example. The GNOME Components has a more in-depth explanation. USE_GNOME has to be set
for these macros to be of use.

GLIB_SCHEMAS

List of all the glib schema files the port installs. The macro will add the files to the port plist and
handle the registration of these files on install and deinstall.

The glib schema files are written in XML and end with the gschema.xml extension. They are
installed in the share/glib-2.0/schemas/ directory. These schema files contain all application
config values with their default settings. The actual database used by the applications is built by
glib-compile-schema, which is run by the GLIB_SCHEMAS macro.

GLIB_SCHEMAS=foo.gschema.xml

o Do not add glib schemas to the pkg-plist. If they are listed in pkg-plist, they will
not be registered and the applications might not work properly.

147

GCONF_SCHEMAS

List all the gconf schema files. The macro will add the schema files to the port plist and will
handle their registration on install and deinstall.

GConf is the XML-based database that virtually all GNOME applications use for storing their
settings. These files are installed into the etc/gconf/schemas directory. This database is defined
by installed schema files that are used to generate %gconf.xml key files. For each schema file
installed by the port, there must be an entry in the Makefile:

GCONF_SCHEMAS=my_app.schemas my_app2.schemas my_app3.schemas

Gceonf schemas are listed in the GCONF_SCHEMAS macro rather than pkg-plist. If
0 they are listed in pkg-plist, they will not be registered and the applications
might not work properly.

INSTALLS_OMF

Open Source Metadata Framework (OMF) files are commonly used by GNOME 2 applications.
These files contain the application help file information, and require special processing by
ScrollKeeper/rarian. To properly register OMF files when installing GNOME applications from
packages, make sure that omf files are listed in pkg-plist and that the port Makefile has
INSTALLS_OMF defined:

INSTALLS_OMF=yes

When set, bsd.gnome.mk automatically scans pkg-plist and adds appropriate @exec and @unexec
directives for each .omf to track in the OMF registration database.

6.11. GNOME Components

For further help with a GNOME port, look at some of the existing ports for examples. The FreeBSD
GNOME page has contact information if more help is needed. The components are divided into
GNOME components that are currently in use and legacy components. If the component supports
argument, they are listed between parenthesis in the description. The first is the default. "Both" is
shown if the component defaults to adding to both build and run dependencies.

& 16. GNOME Components

Component Associated program Description

atk accessibility/atk Accessibility toolkit (ATK)
atkmm accessibility/atkmm c++ bindings for atk

cairo graphics/cairo Vector graphics library with

cross-device output support

cairomm graphics/cairomm c++ bindings for cairo

148

https://www.FreeBSD.org/ports/gnome.html
https://www.FreeBSD.org/gnome/
https://www.FreeBSD.org/gnome/

Component

dconf

evolutiondataserver3

gdkpixbuf2

glib20

glibmm
gnomecontrolcenter3
gnomedesktop3

gsound

gtk-update-icon-cache

gtk20
gtk30
gtkmm20

gtkmm24

gtkmm30

gtksourceview?

gtksourceview3

gtksourceviewmm3

gvfs

intltool

introspection

Associated program

devel/dconf

databases/evolution-data-server

graphics/gdk-pixbuf2
devel/glib20

devel/glibmm
sysutils/gnome-control-center
x11/gnome-desktop

audio/gsound

graphics/gtk-update-icon-cache

x11-toolkits/gtk20
x11-toolkits/gtk30
x11-toolkits/gtkmm20

x11-toolkits/gtkmm24

x11-toolkits/gtkmm30

x11-toolkits/gtksourceview2

x11-toolkits/gtksourceview3

x11-toolkits/gtksourceviewmm3

devel/gvfs

textproc/intltool

devel/gobject-introspection

Description

Configuration database system
(both, build, run)

Data backends for the Evolution
integrated mail/PIM suite

Graphics library for GTK+
GNOME core library g1ib20
c++ bindings for glib20
GNOME 3 Control Center
GNOME 3 desktop Ul library

GObject library for playing
system sounds (both, build, run)

Gtk-update-icon-cache utility
from the Gtk+ toolkit

Gtk+ 2 toolkit
Gtk+ 3 toolkit

c++ bindings 2.0 for the gtk20
toolkit

c++ bindings 2.4 for the gtk20
toolkit

c++ bindings 3.0 for the gtk30
toolkit

Widget that adds syntax
highlighting to GtkTextView

Text widget that adds syntax
highlighting to the GtkTextView
widget

c++ bindings for the
gtksourceview3 library

GNOME virtual file system

Tool for internationalization
(also see intlhack)

Basic introspection bindings
and tools to generate
introspection bindings. Most of
the time :build is enough,
:both/:run is only need for
applications that use
introspection bindings. (both,
build, run)

149

Component
1ibgda5

libgda5-ui

1ibgdamm5

libgsf

librsvg?

libsigc++20

1ibxml++26

1libxm12

libxslt
metacity
nautilus3

pango

pangomm

py3gobject3
pygobject3
vte3

% 17. GNOME Macro Components

Component

gnomeprefix

intlhack

referencehack

150

Associated program

databases/libgda5

databases/libgda5-ui

databases/libgdamm5

devel/libgsf

graphics/librsvg2

devel/libsigc++20

textproc/libxml++26

textproc/libxml2

textproc/libxslt
x11-wm/metacity
x11-fm/nautilus

x11-toolkits/pango

x11-toolkits/pangomm

devel/py3-gobject3
devel/py-gobject3
x11-toolkits/vte3

Description

Description

Provides uniform access to
different kinds of data sources

Ul library from the libgda5s
library

c++ bindings for the libgda5
library

Extensible I/O abstraction for
dealing with structured file
formats

Library for parsing and
rendering SVG vector-graphic
files

Callback Framework for C++

c++ bindings for the libxml2
library

XML parser library (both, build,
run)

XSLT C library (both, build, run)
Window manager from GNOME
GNOME file manager

Open-source framework for the
layout and rendering of i18n
text

c++ bindings for the pango
library

Python 3, GObject 3.0 bindings
Python 2, GObject 3.0 bindings

Terminal widget with improved
accessibility and I18N support

Supply configure with some default locations.

Same as intltool, but patches to make sure
share/locale/ is used. Please only use when
intltool alone is not enough.

This macro is there to help splitting of the API or
reference documentation into its own port.

& 18. GNOME Legacy Components

Component

atspi

esound

gal2

gconf2

gconfmm26
gdkpixbuf
glib12
gnomedocutils

gnomemimedata

gnomesharp20

gnomespeech
gnomevfs?
gtk12
gtkhtml3

gtkhtml4

gtksharp20

gtksourceview

libartgpl2

1ibbonobo

1ibbonoboui

libgda4

libglade?

Associated program

accessibility/at-spi

audio/esound

x11-toolkits/gal2

devel/gconf2

devel/gconfmm26
graphics/gdk-pixbuf
devel/glib12
textproc/gnome-doc-utils

misc/gnome-mime-data

x11-toolkits/gnome-sharp20

accessibility/gnome-speech
devel/gnome-vfs
x11-toolkits/gtk12

www/gtkhtml3

www/gtkhtml4

x11-toolkits/gtk-sharp20

x11-toolkits/gtksourceview

graphics/libart_lgpl

devel/libbonobo

x11-toolkits/libbonoboui

databases/libgda4

devel/libglade2

Description

Assistive Technology Service
Provider Interface

Enlightenment sound package

Collection of widgets taken
from GNOME 2 gnumeric

Configuration database system
for GNOME 2

c++ bindings for gconf2
Graphics library for GTK+
glib 1.2 core library
GNOME doc utils

MIME and Application database
for GNOME 2

GNOME 2 interfaces for the
NET runtime

GNOME 2 text-to-speech API
GNOME 2 Virtual File System
Gtk+ 1.2 toolkit

Lightweight HTML
rendering/printing/editing
engine

Lightweight HTML
rendering/printing/editing
engine

GTK+ and GNOME 2 interfaces
for the .NET runtime

Widget that adds syntax
highlighting to GtkTextView

Library for high-performance
2D graphics

Component and compound
document system for GNOME 2

GUI frontend to the libbonobo
component of GNOME 2

Provides uniform access to
different kinds of data sources

GNOME 2 glade library

151

Component

libgnome

libgnomecanvas

1ibgnomekbd

libgnomeprint
libgnomeprintui

libgnomeui

libgtkhtml

libgtksourceviewmm

libidl

libsigc++12
1libwnck

libwnck3

orbit2

pygnome2
pygobject

pygtk?2

pygtksourceview

vte

Associated program

x11/libgnome

graphics/libgnomecanvas

x11/libgnomekbd

print/libgnomeprint
x11-toolkits/libgnomeprintui

x11-toolkits/libgnomeui

www/libgtkhtml

x11-
toolkits/libgtksourceviewmm

devel/libIDL

devel/libsigc++12

x11-toolkits/libwnck

x11-toolkits/libwnck3

devel/ORBit2

x11-toolkits/py-gnome2
devel/py-gobject
x11-toolkits/py-gtk2

x11-toolkits/py-gtksourceview

x11-toolkits/vte

2 19. Deprecated Components: Do Not Use

Component

pangox-compat

152

Description

Description

Libraries for GNOME 2, a GNU
desktop environment

Graphics library for GNOME 2

GNOME 2 keyboard shared
library

Gnome 2 print support library
Gnome 2 print support library

Libraries for the GNOME 2 GUI,
a GNU desktop environment

Lightweight HTML
rendering/printing/editing
engine

c++ binding of GtkSourceView

Library for creating trees of
CORBA IDL file

Callback Framework for C++

Library used for writing pagers
and taskslists

Library used for writing pagers
and taskslists

High-performance CORBA ORB
with support for the C language

Python bindings for GNOME 2
Python 2, GObject 2.0 bindings
Set of Python bindings for GTK+

Python bindings for
GtkSourceView 2

Terminal widget with improved
accessibility and 118N support

pangox-compat has been deprecated and split
off from the pango package.

6.12. Using Qt

o For ports that are part of Qt itself, see qt-dist.

6.12.1. Ports That Require Qt

The Ports Collection provides support for Qt 5 with USES+=qt:5. Set USE_QT to the list of required Qt
components (libraries, tools, plugins).

The Qt framework exports a number of variables which can be used by ports, some of them listed
below:

£ 20. Variables Provided to Ports That Use Qt

QMAKE Full path to gmake binary.
LRELEASE Full path to lrelease utility.
mMoc Full path to moc.

RCC Full path to rcc.

UIc Full path to uic.

QT_INCDIR Qt include directory.
QT_LIBDIR Qt libraries path.
QT_PLUGINDIR Qt plugins path.

6.12.2. Component Selection

Individual Qt tool and library dependencies must be specified in USE_QT. Every component can be
suffixed with _build or _run, the suffix indicating whether the dependency on the component is at
buildtime or runtime. If unsuffixed, the component will be depended on at both build- and runtime.
Usually, library components are specified unsuffixed, tool components are mostly specified with the
_build suffix and plugin components are specified with the _run suffix. The most commonly used
components are listed below (all available components are listed in _USE_QT_ALL, and _USE_QT5_ONLY
in /usr/ports/Mk/Uses/qt.mKk):

% 21. Available Qt Library Components

Name Description

3d Qt3D module

assistant Qt 5 documentation browser

canvas3d Qt canvas3d module

charts Qt 5 charts module

concurrent Qt multi-threading module
connectivity Qt connectivity (Bluetooth/NFC) module
core Qt core non-graphical module

153

../uses/index.html#uses-qt-dist

Name
datavis3d

dbus

declarative

designer

diag

doc
examples

gamepad

graphicaleffects

qui

help
110n
linguist
location

multimedia

network
networkauth
opengl
paths
phonon4
pixeltool
plugininfo
printsupport
qdbus
qdbusviewer
qdoc
qdoc-data
qev

gmake

quickcontrols

154

Description
Qt 5 3D data visualization module
Qt D-Bus inter-process communication module

Qt declarative framework for dynamic user
interfaces

Qt 5 graphical user interface designer

Tool for reporting diagnostic information about
Qt and its environment

Qt 5 documentation

Qt 5 examples sourcecode

Qt 5 Gamepad Module

Qt Quick graphical effects

Qt graphical user interface module
Qt online help integration module
Qt localized messages

Qt 5 translation tool

Qt location module

Qt audio, video, radio and camera support
module

Qt network module

Qt network auth module

Qt 5-compatible OpenGL support module
Command line client to QStandardPaths
KDE multimedia framework

Qt 5 screen magnifier

Qt5 plugin metadata dumper

Qt print support module

Qt command-line interface to D-Bus

Qt 5 graphical interface to D-Bus

Qt documentation generator

QDoc configuration files

Qt QWidget events introspection tool

Qt Makefile generator

Set of controls for building complete interfaces
in Qt Quick

Name

quickcontrols?

remoteobjects

script
scripttools
scxml
sensors
serialbus
serialport
speech

sql
sql-ibase
sql-mysql
sql-odbc
sql-pgsql
sql-sqlite2
sql-sqlite3
sql-tds

svg

testlib

uiplugin

uitools

virtualkeyboard

wayland

webchannel

webengine

webkit

websockets

websockets-qml

webview

widgets

Description

Set of controls for building complete interfaces
in Qt Quick

Qt5 SXCML module

Qt 4-compatible scripting module

Qt Script additional components

Qt5 SXCML module

Qt sensors module

Qt functions to access industrial bus systems
Qt functions to access serial ports
Accessibilty features for Qt5

Qt SQL database integration module

Qt InterBase/Firebird database plugin

Qt MySQL database plugin

Qt Open Database Connectivity plugin

Qt PostgreSQL database plugin

Qt SQLite 2 database plugin

Qt SQLite 3 database plugin

Qt TDS Database Connectivity database plugin
Qt SVG support module

Qt unit testing module

Custom Qt widget plugin interface for Qt
Designer

Qt Designer UI forms support module
Qt 5 Virtual Keyboard Module
Qt5 wrapper for Wayland

Qt 5 library for integration of C++/QML with
HTMLY/js clients

Qt 5 library to render web content

QtWebKit with a more modern WebKit code
base

Qt implementation of WebSocket protocol

Qt implementation of WebSocket protocol (QML
bindings)

Qt component for displaying web content

Qt C++ widgets module

155

Name Description

x11extras Qt platform-specific features for X11-based
systems

xml Qt SAX and DOM implementations

xmlpatterns Qt support for XPath, XQuery, XSLT and XML
Schema

To determine the libraries an application depends on, run ldd on the main executable after a
successful compilation.

%% 22. Available Qt Tool Components

Name Description

buildtools build tools (moc, rcc), needed for almost every Qt
application.

Linguisttools localization tools: lrelease, lupdate

gmake Makefile generator/build utility

%% 23. Available Qt Plugin Components
Name Description

imageformats plugins for TGA, TIFF, and MNG image formats

{5l 71. Selecting Qt 5 Components

In this example, the ported application uses the Qt 5 graphical user interface library, the Qt 5
core library, all of the Qt 5 code generation tools and Qt 5’s Makefile generator. Since the qgui
library implies a dependency on the core library, core does not need to be specified. The Qt 5
code generation tools moc, uic and rcc, as well as the Makefile generator gmake are only needed
at buildtime, thus they are specified with the _build suffix:

USES= qt:5
USE_QT= gui buildtools_build gmake_build

6.12.3. Using gmake

If the application provides a gmake project file (*.pro), define USES= gmake along with USE_QT. USES=
gmake already implies a build dependency on qmake, therefore the gqmake component can be
omitted from USE_QT. Similar to CMake, qmake supports out-of-source builds, which can be enabled
by specifying the outsource argument (see USES= gmake example). Also see Possible Arguments for
USES= gmake.

2 24. Possible Arguments for USES= qmake

156

Variable Description

no_configure Do not add the configure target. This is implied
by HAS_CONFIGURE=yes and GNU_CONFIGURE=yes. It is
required when the build only needs the
environment setup from USES= gmake, but
otherwise runs gmake on its own.

no_env Suppress modification of the configure and
make environments. It is only required when
gmake is used to configure the software and the
build fails to understand the environment setup
by USES= gmake.

norecursive Do not pass the -recursive argument to qmake.

outsource Perform an out-of-source build.

% 25. Variables for Ports That Use qmake
Variable Description

QMAKE _ARGS Port specific qmake flags to be passed to the
gmake binary.

QMAKE _ENV Environment variables to be set for the qmake
binary. The default is ${CONFIGURE_ENV}.

QMAKE _SOURCE _PATH Path to qmake project files (.pro). The default is
${WRKSRC} if an out-of-source build is requested,
empty otherwise.

When using USES= gmake, these settings are deployed:

CONFIGURE_ARGS+= --with-qt-includes=${QT_INCDIR} \
--with-qt-libraries=${QT_LIBDIR} \
--with-extra-1ibs=${LOCALBASE}/11ib \
--with-extra-includes=${LOCALBASE}/include

CONFIGURE_ENV+= QTDIR="${QT_PREFIX}" QMAKE="${QMAKE}" \
MOC="${MOC}" RCC="${RCC}" UIC="${UIC}" \
QMAKESPEC="${QMAKESPEC}"

PLIST_SUB+= QT_INCDIR=${QT_INCDIR_REL} \

QT_LIBDIR=${QT_LIBDIR_REL} \
QT_PLUGINDIR=${QT_PLUGINDIR_REL}

Some configure scripts do not support the arguments above. To suppress modification of
CONFIGURE_ENV and CONFIGURE_ARGS, set USES= gmake:no_env.

157

{5 72. USES= gmake Example

This snippet demonstrates the use of qmake for a Qt 5 port:

USES= gmake:outsource qt:5
USE_QT= buildtools_build

Qt applications are often written to be cross-platform and often X11/Unix is not the platform they
are developed on, which in turn leads to certain loose ends, like:

* Missing additional include paths. Many applications come with system tray icon support, but
neglect to look for includes and/or libraries in the X11 directories. To add directories to
“gmake’s include and library search paths via the command line, use:

QMAKE _ARGS+= INCLUDEPATH+=${LOCALBASE}/include \
LIBS+=-L${LOCALBASE}/1ib

* Bogus installation paths. Sometimes data such as icons or .desktop files are by default installed
into directories which are not scanned by XDG-compatible applications. editors/texmaker is an
example for this - look at patch-texmaker.pro in the files directory of that port for a template on
how to remedy this directly in the qmake project file.

6.13. Using KDE

6.13.1. KDE Variable Definitions

If the application depends on KDE, set USES+=kde:5 and USE_KDE to the list of required components.
_build and _run suffixes can be used to force components dependency type (for example,
baseapps_run). If no suffix is set, a default dependency type will be used. To force both types, add the
component twice with both suffixes (for example, ecm_build ecm_run). Available components are
listed below (up-to-date components are also listed in /usr/ports/Mk/Uses/kde.mKk):

% 26. Available KDE Components

Name Description

activities KF5 runtime and library to organize work in
separate activities

activities-stats KFS5 statistics for activities

activitymanagerd System service to manage user’s activities, track
the usage patterns

akonadi Storage server for KDE-Pim
akonadicalendar Akonadi Calendar Integration
akonadiconsole Akonadi management and debugging console

158

https://cgit.freebsd.org/ports/tree/editors/texmaker/pkg-descr

Name

akonadicontacts

akonadiimportwizard

akonadimime

akonadinotes

akonadisearch

akregator
alarmcalendar
apidox

archive

attica

atticab

auth

baloo

baloo-widgets

baloob

blog
bookmarks

breeze

breeze-gtk
breeze-icons
calendarcore
calendarsupport

calendarutils

codecs

completion

Description

Libraries and daemons to implement Contact
Management in Akonadi

Import data from other mail clients to KMail

Libraries and daemons to implement basic
email handling

KDE library for accessing mail storages in MBox
format

Libraries and daemons to implement searching
in Akonadi

A Feed Reader by KDE
KDE API for KAlarm alarms
KF5 API Documentation Tools

KFS5 library that provides classes for handling
archive formats

Open Collaboration Services API library KDE5
version

Open Collaboration Services API library KDES
version

KF5 abstraction to system policy and
authentication features

KF5 Framework for searching and managing
user metadata

BalooWidgets library

KF5 Framework for searching and managing
user metadata

KDE API for weblogging access
KFS5 library for bookmarks and the XBEL format

Plasma5 artwork, styles and assets for the
Breeze visual style

Plasmab5 Breeze visual style for Gtk
Breeze icon theme for KDE

KDE calendar access library

Calendar support libraries for KDEPim

KDE utility and user interface functions for
accessing calendar

KFS5 library for string manipulation

KF5 text completion helpers and widgets

159

Name

config
configwidgets
contacts
coreaddons

crash

dbusaddons
decoration

designerplugin

discover
dnssd
doctools
drkonqi
ecm
emoticons
eventviews

filemetadata

frameworkintegration

gapi
globalaccel

grantlee-editor
grantleetheme
gravatar

guiaddons

holidays

hotkeys

118n

iconthemes
identitymanagement
idletime

imap

160

Description

KF5 widgets for configuration dialogs
KF5 widgets for configuration dialogs
KDE api to manage contact information
KF5 addons to QtCore

KFS5 library to handle crash analysis and bug
report from apps

KF5 addons to QtDBus
Plasmab5 library to create window decorations

KFS5 integration of Frameworks widgets in Qt
Designer/Creator

Plasmab5 package management tools

KF5 abstraction to system DNSSD features
KF5 documentation generation from docbook
Plasma5 crash handler

Extra modules and scripts for CMake

KFS5 library to convert emoticons

Event view libriares for KDEPim

KF5 library for extracting file metadata

KF5 workspace and cross-framework integration

plugins
KDE based library to access google services

KF5 library to add support for global workspace
shortcuts

Editor for Grantlee themes

KDE PIM grantleetheme

Library for gravatar support

KF5 addons to QtGui

KDE library for calendar holidays

Plasma5 library for hotkeys

KF5 advanced internationalization framework
KFS5 library for handling icons in applications
KDE pim identities

KF5 library for monitoring user activity

KDE API for IMAP support

Name

incidenceeditor
infocenter

init

itemmodels
itemviews
jobwidgets

js

jsembed

kaddressbook
kalarm

kalarm

kate

kemutils
kde-cli-tools
kde-gtk-config

kdeclarative

kded

kdelibs4support
kdepim-addons
kdepim-apps-1ibs
kdepim-runtime5

kdeplasma-addons

kdesu
kdewebkit
kgammab
khtml

kimageformats

kio

Description
Incidence editor libriares for KDEPim
Plasmab5 utility providing system information

KF5 process launcher to speed up launching
KDE applications

KF5 models for Qt Model/View system
KF5 widget addons for Qt Model/View
KF5 widgets for tracking KJob instance

KEFS5 library providing an ECMAScript
interpreter

KF5 library for binding JavaScript objects to
QObjects

KDE contact manager

Personal alarm scheduler

Personal alarm scheduler

Basic editor framework for the KDE system
KF5 utilities for working with KCModules
Plasmab5 non-interactive system tools
Plasma5 GTK2 and GTK3 configurator

KF5 library providing integration of QML and
KDE Frameworks

KF5 extensible daemon for providing system
level services

KF5 porting aid from KDELibs4
KDE PIM addons

KDE PIM mail related libraries
KDE PIM tools and services

Plasmab5 addons to improve the Plasma
experience

KF5 integration with su for elevated privileges
KEF5 library providing integration of QtWebKit
Plasma5 monitor’s gamma settings

KF5 KTHML rendering engine

KFS5 library providing support for additional
image formats

KF5 resource and network access abstraction

161

Name
kirigami?

kitinerary

kmail

kmail
kmail-account-wizard
kmenuedit

knotes

kontact

kontact
kontactinterface
korganizer
kpimdav

kpkpass

kross

kscreen
kscreenlocker

ksmtp

ksshaskpass

ksysguard

kwallet-pam
kwayland-integration
kwin

kwrited

1dap

libkcddb
libkcompactdisc
libkdcraw
libkdegames
libkdepim

libkeduvocdocument

162

Description
QtQuick based components set

Data Model and Extraction System for Travel
Reservation information

KDE mail client

KDE mail client

KDE mail account wizard

Plasma5 menu editor

Popup notes

KDE Personal Information Manager

KDE Personal Information Manager

KDE glue for embedding KParts into Kontact
Calendar and scheduling Program

A DAV protocol implementation with KJobs
Library to deal with Apple Wallet pass files
KF5 multi-language application scripting
Plasma5 screen management library
Plasma5 secure lock screen architecture

Job-based library to send email through an
SMTP server

Plasma5 ssh-add frontend

Plasma5 utility to track and control the running
processes

Plasma5 KWallet PAM Integration
Integration plugins for a Wayland-based desktop
Plasma5 window manager

Plasma5 daemon listening for wall and write
messages

LDAP access API for KDE

KDE CDDB library

KDE library for interfacing with audio CDs
LibRaw interface for KDE

Libraries used by KDE games

KDE PIM Libraries

Library for reading and writing vocabulary files

Name
libkexiv2

libkipi
libkleo
libksane
libkscreen
libksieve

libksysquard

mailcommon
mailimporter
mailtransport
marble

mbox

mbox-importer
mediaplayer
messagelib
milou

mime

newstuff

notifications
notifyconfig
okular

oxygen
oxygen-iconsb
package

parts

people
pim-data-exporter
pimcommon
pimtextedit

plasma-browser-integration

Description

Exiv2 library interface for KDE

KDE Image Plugin Interface
Certificate manager for KDE

SANE library interface for KDE
Plasma5 screen management library
Sieve libriares for KDEPim

Plasmab5 library to track and control running
processes

Common libriares for KDEPim

Import mbox files to KMail

KDE library to managing mail transport
Virtual globe and world atlas for KDE

KDE library for accessing mail storages in MBox
format

Import mbox files to KMail

KF5 plugin interface for media player features
Library for handling messages

Plasma5 Plasmoid for search

Library for handling MIME data

KFS5 library for downloading application assets
from the network

KF5 abstraction for system notifications
KF5 configuration system for KNotify
KDE universal document viewer
Plasma5 Oxygen style

The Oxygen icon theme for KDE

KF5 library to load and install packages
KF5 document centric plugin system
KF5 library providing access to contacts
Import and export KDE PIM settings
Common libriares for KDEPim

KDE library for PIM-specific text editing utilities

Plasma5 components to integrate browsers into
the desktop

163

Name

plasma-desktop

plasma-framework

plasma-integration

plasma-pa

plasma-sdk

plasma-workspace
plasma-workspace-wallpapers
plotting

polkit-kde-agent-1

powerdevil

prison

pty

purpose
qqc2-desktop-style
runner

service

solid

sonnet

syndication

syntaxhighlighting

systemsettings
texteditor
textwidgets
threadweaver
tnef
unitconversion
user-manager

wallet

164

Description
Plasma5 plasma desktop

KF5 plugin based UI runtime used to write user
interfaces

Qt Platform Theme integration plugins for the
Plasma workspaces

Plasma5 Plasma pulse audio mixer

Plasma5 applications useful for Plasma
development

Plasma5 Plasma workspace
Plasma5 wallpapers
KF5 lightweight plotting framework

Plasma5 daemon providing a polkit
authentication UI

Plasma5 tool to manage the power consumption
settings

API to produce barcodes

KF5 pty abstraction

Offers available actions for a specific purpose
Qt QuickControl2 style for KDE

KF5 parallelized query system

KF5 advanced plugin and service introspection
KF5 hardware integration and detection

KF5 plugin-based spell checking library

KDE RSS feed handling library

KF5 syntax highlighting engine for structured
text and code

Plasma5 system settings

KF5 advanced embeddable text editor
KF5 advanced text editing widgets
KF5 addons to QtDBus

KDE API for the handling of TNEF data
KFS5 library for unit conversion
Plasma5 user manager

KF5 secure and unified container for user
passwords

Name Description

wayland KFS5 Client and Server library wrapper for the
Wayland libraries

widgetsaddons KF5 addons to QtWidgets

windowsystem KFS5 library for access to the windowing system

xmlgui KF5 user configurable main windows

xmlrpcclient KF5 interaction with XMLRPC services

{51 73. USE_KDE Example

This is a simple example for a KDE port. USES= cmake instructs the port to utilize CMake, a
configuration tool widely used by KDE projects (see Using cmake for detailed usage). USE_KDE
brings dependency on KDE libraries. Required KDE components and other dependencies can
be determined through the configure log. USE_KDE does not imply USE_QT. If a port requires
some Qt components, specify them in USE_QT.

USES= cmake kde:5 qt:5
USE_KDE= ecm
USE QT= core buildtools_build gmake_build

6.14. Using LXQt

Applications depending on LXQt should set USES+= 1xqt and set USE_LXQT to the list of required
components from the table below

% 27. Available LXQt Components

Name Description

buildtools Helpers for additional CMake modules

libfmqt Libfm Qt bindings

1xqt LXQt core library

qtxdg Qt implementation of freedesktop.org XDG
specifications

165

{5 74. USE_LXQT Example

This is a simple example, USE_LXQT adds a dependency on LXQt libraries. Required LXQt
components and other dependencies can be determined from the configure log.

USES= cmake 1xqt qt:5 tar:xz
USE_QT= core dbus widgets buildtools_build gmake_build
USE_LXQT= buildtools libfmqt

6.15. Using Java

6.15.1. Variable Definitions

If the port needs a Java™ Development Kit (JDK™) to either build, run or even extract the distfile,
then define USE_JAVA.

There are several JDKs in the ports collection, from various vendors, and in several versions. If the
port must use a particular version, specify it using the JAVA_VERSION variable. The most current
version is java/openjdk16, with java/openjdk15, java/openjdk14, java/openjdk13, java/openjdk12,
java/openjdk11, java/openjdk8, and java/openjdk?7 also available.

% 28. Variables Which May be Set by Ports That Use Java

Variable Means

USE_JAVA Define for the remaining variables to have any
effect.

JAVA_VERSION List of space-separated suitable Java versions for

the port. An optional "+" allows specifying a
range of versions (allowed values: 7[+] 8[+]
T1[+] 12[+] 13[+] 14[+] 15[+] 16[+]).

JAVA_0S List of space-separated suitable JDK port
operating systems for the port (allowed values:
native linux).

JAVA_VENDOR List of space-separated suitable JDK port
vendors for the port (allowed values: openjdk
oracle).

JAVA_BUILD When set, add the selected JDK port to the build
dependencies.

JAVA_RUN When set, add the selected JDK port to the run
dependencies.

JAVA_EXTRACT When set, add the selected JDK port to the

extract dependencies.

Below is the list of all settings a port will receive after setting USE_JAVA:

166

https://cgit.freebsd.org/ports/tree/java/openjdk16/pkg-descr
https://cgit.freebsd.org/ports/tree/java/openjdk15/pkg-descr
https://cgit.freebsd.org/ports/tree/java/openjdk14/pkg-descr
https://cgit.freebsd.org/ports/tree/java/openjdk13/pkg-descr
https://cgit.freebsd.org/ports/tree/java/openjdk12/pkg-descr
https://cgit.freebsd.org/ports/tree/java/openjdk11/pkg-descr
https://cgit.freebsd.org/ports/tree/java/openjdk8/pkg-descr
https://cgit.freebsd.org/ports/tree/java/openjdk7/pkg-descr

%% 29. Variables Provided to Ports That Use Java

Variable
JAVA_PORT

JAVA_PORT_VERSION

JAVA_PORT_0S

JAVA_PORT_VENDOR

JAVA_PORT_0S_DESCRIPTION

JAVA_PORT_VENDOR_DESCRIPTION

JAVA_HOME

JAVAC

JAR

APPLETVIEWER

JAVA

JAVADOC

JAVAH

JAVAP
JAVA_KEYTOOL
JAVA_N2A
JAVA_POLICYTOOL
JAVA_SERTALVER
RMIC
RMIREGISTRY
RMID

Value

The name of the JDK port (for example,
java/openjdko).

The full version of the JDK port (for example,
1.6.0). Only the first two digits of this version

number are needed, use
${JAVA_PORT_VERSION:C/A([0-9])\.([0-

9D (. *)$/\1.\2/1.

The operating system used by the JDK port (for
example, 'native').

The vendor of the JDK port (for example,
"openjdk").

Description of the operating system used by the
JDK port (for example, 'Native').

Description of the vendor of the JDK port (for
example, 'OpenJDK BSD Porting Team').

Path to the installation directory of the JDK (for
example, '/usr/local/openjdke’).

Path to the Java compiler to use (for example,
'/usr/local/openjdk6/bin/javac’).

Path to the jar tool to use (for example,
'fusr/local/openjdk6/bin/jar' or
'fusr/local/bin/fastjar’).

Path to the appletviewer utility (for example,
'lusr/local/openjdk6/bin/appletviewer").

Path to the java executable. Use this for
executing Java programs (for example,
'/usr/local/openjdk6/bin/java’).

Path to the javadoc utility program.

Path to the javah program.

Path to the javap program.

Path to the keytool utility program.

Path to the native2ascii tool.

Path to the policytool program.

Path to the serialver utility program.

Path to the RMI stub/skeleton generator, rmic.
Path to the RMI registry program, rmiregistry.

Path to the RMI daemon program rmid.

167

Variable Value

JAVA_CLASSES Path to the archive that contains the JDK class
files, ${JAVA_HOME}/jre/lib/rt.jar.

Use the java-debug make target to get information for debugging the port. It will display the value of
many of the previously listed variables.

Additionally, these constants are defined so all Java ports may be installed in a consistent way:

£ 30. Constants Defined for Ports That Use Java
Constant Value

JAVASHAREDIR The base directory for everything related to
Java. Default: ${PREFIX}/share/java.

JAVAJARDIR The directory where JAR files is installed.
Default: ${JAVASHAREDIR}/classes.

JAVALIBDIR The directory where JAR files installed by other
ports are located. Default:
${LOCALBASE}/share/java/classes.

The related entries are defined in both PLIST_SUB (documented in Changing pkg-plist Based on Make
Variables) and SUB_LIST.

6.15.2. Building with Ant

When the port is to be built using Apache Ant, it has to define USE_ANT. Ant is thus considered to be
the sub-make command. When no do-build target is defined by the port, a default one will be set
that runs Ant according to MAKE_ENV, MAKE_ARGS and ALL_TARGET. This is similar to the USES= gmake
mechanism, which is documented in Building Mechanisms.

6.15.3. Best Practices

When porting a Java library, the port has to install the JAR file(s) in ${JAVAJARDIR}, and everything
else under ${JAVASHAREDIR}/${PORTNAME} (except for the documentation, see below). To reduce
the packing file size, reference the JAR file(s) directly in the Makefile. Use this statement (where
myport.jar is the name of the JAR file installed as part of the port):

PLIST_FILES+= ${JAVAJARDIR}/myport.jar

When porting a Java application, the port usually installs everything under a single directory
(including its JAR dependencies). The use of ${JAVASHAREDIR}/${PORTNAME} is strongly
encouraged in this regard. It is up the porter to decide whether the port installs the additional JAR
dependencies under this directory or uses the already installed ones (from ${JAVAJARDIR}).

When porting a Java™ application that requires an application server such as wwwj/tomcat7 to run
the service, it is quite common for a vendor to distribute a .war. A .war is a Web application
ARchive and is extracted when called by the application. Avoid adding a .war to pkg-plist. It is not

168

../plist/index.html#plist-sub
../plist/index.html#plist-sub
https://cgit.freebsd.org/ports/tree/www/tomcat7/pkg-descr

considered best practice. An application server will expand war archive, but not clean it up
properly if the port is removed. A more desirable way of working with this file is to extract the
archive, then install the files, and lastly add these files to pkg-plist.

TOMCATDIR= ${LOCALBASE}/apache-tomcat-7.0
WEBAPPDIR= myapplication

post-extract:
@${MKDIR} ${WRKDIR}/${PORTDIRNAME}
@${TAR} xf ${WRKDIR}/myapplication.war -C ${WRKDIR}/${PORTDIRNAME}

do-install:
cd ${WRKDIR} && \
${INSTALL} -d -0 ${WWWOWN} -g ${WWWGRP} ${TOMCATDIR}/webapps/${PORTDIRNAME}
cd ${WRKDIR}/${PORTDIRNAME} && ${COPYTREE_SHARE} * ${WEBAPPDIR}/${PORTDIRNAME}

Regardless of the type of port (library or application), the additional documentation is installed in
the same location as for any other port. The Javadoc tool is known to produce a different set of files
depending on the version of the JDK that is used. For ports that do not enforce the use of a
particular JDK, it is therefore a complex task to specify the packing list (pkg-plist). This is one reason
why porters are strongly encouraged to use PORTDOCS. Moreover, even if the set of files that will be
generated by javadoc can be predicted, the size of the resulting pkg-plist advocates for the use of
PORTDOCS.

The default value for DATADIR is ${PREFIX}/share/${PORTNAME}. It is a good idea to override DATADIR
to ${JAVASHAREDIR}/${PORTNAME} for Java ports. Indeed, DATADIR is automatically added to
PLIST_SUB (documented in Changing pkg-plist Based on Make Variables) so use %%DATADIR%% directly
in pkg-plist.

As for the choice of building Java ports from source or directly installing them from a binary
distribution, there is no defined policy at the time of writing. However, people from the FreeBSD
Java Project encourage porters to have their ports built from source whenever it is a trivial task.

All the features that have been presented in this section are implemented in bsd.java.mk. If the port
needs more sophisticated Java support, please first have a look at the bsd.java.mk Git log as it
usually takes some time to document the latest features. Then, if the needed support that is lacking
would be beneficial to many other Java ports, feel free to discuss it on the freebsd-java.

Although there is a java category for PRs, it refers to the JDK porting effort from the FreeBSD Java
project. Therefore, submit the Java port in the ports category as for any other port, unless the issue
is related to either a JDK implementation or bsd.java.mk.

Similarly, there is a defined policy regarding the CATEGORIES of a Java port, which is detailed in
Categorization.

6.16. Web Applications, Apache and PHP

169

../makefiles/index.html#install-documentation
../plist/index.html#plist-sub
https://www.freebsd.org/java/
https://www.freebsd.org/java/
https://cgit.FreeBSD.org/ports/tree/Mk/bsd.java.mk
../makefiles/index.html#makefile-categories

6.16.1. Apache

% 31. Variables for Ports That Use Apache
USE_APACHE

APXS
HTTPD

APACHE _VERSION

APACHEMODDIR
APACHEINCLUDEDIR

APACHEETCDIR

% 32. Useful Variables for Porting Apache Modules
MODULENAME

SHORTMODNAME
AP_FAST_BUILD

AP_GENPLIST
AP_INC

AP_LIB

AP_EXTRAS

6.16.2. Web Applications

The port requires Apache. Possible values: yes
(gets any version), 22, 24, 22-24, 22+, etc. The
default APACHE version is 22. More details are
available in ports/Mk/bsd.apache.mk and at
wiki.freebsd.org/Apache/.

Full path to the apxs binary. Can be overridden
in the port.

Full path to the httpd binary. Can be overridden
in the port.

The version of present Apache installation (read-
only variable). This variable is only available
after inclusion of bsd.port.pre.mk. Possible
values: 22, 24.

Directory for Apache modules. This variable is
automatically expanded in pkg-plist.

Directory for Apache headers. This variable is
automatically expanded in pkg-plist.

Directory for Apache configuration files. This
variable is automatically expanded in pkg-plist.

Name of the module. Default value is PORTNAME.
Example: mod_hello

Short name of the module. Automatically
derived from MODULENAME, but can be overridden.
Example: hello

Use apxs to compile and install the module.
Also automatically creates a pkg-plist.

Adds a directory to a header search path during
compilation.

Adds a directory to a library search path during
compilation.

Additional flags to pass to apxs.

Web applications must be installed into PREFIX/www/appname. This path is available both in
Makefile and in pkg-plist as WWWDIR, and the path relative to PREFIX is available in Makefile as

WWWDIR_REL.

170

https://wiki.freebsd.org/Apache/

The user and group of web server process are available as WWWOWN and WWWGRP, in case the ownership
of some files needs to be changed. The default values of both are www. Use WWWOWN?= myuser and
WWWGRP?= mygroup if the port needs different values. This allows the user to override them easily.

o Use WWWOWN and WWWGRP sparingly. Remember that every file the web server can
write to is a security risk waiting to happen.

Do not depend on Apache unless the web app explicitly needs Apache. Respect that users may wish
to run a web application on a web server other than Apache.

6.16.3. PHP

PHP web applications declare their dependency on it with USES=php. See php for more information.

6.16.4. PEAR Modules
Porting PEAR modules is a very simple process.

Add USES=pear to the port’s Makefile. The framework will install the relevant files in the right places
and automatically generate the plist at install time.

{5 75. Example Makefile for PEAR Class

PORTNAME= Date
DISTVERSION= 1.4.3
CATEGORIES= devel www pear

MAINTAINER= example@domain.com
COMMENT= PEAR Date and Time Zone Classes

USES= pear

.include <bsd.port.mk>

(r) PEAR modules will automatically be flavorized using PHP flavors.

o If a non default PEAR_CHANNEL is used, the build and run-time dependencies will
automatically be added.

PEAR modules do not need to defined PKGNAMESUFFIX it is automatically filled in
o using PEAR_PKGNAMEPREFIX. If a port needs to add to PKGNAMEPREFIX, it must also use
PEAR_PKGNAMEPREFIX to differentiate between different flavors.

6.16.4.1. Horde Modules

In the same way, porting Horde modules is a simple process.

171

../uses/index.html#uses-php
../flavors/index.html#flavors-auto-php

Add USES=horde to the port’s Makefile. The framework will install the relevant files in the right
places and automatically generate the plist at install time.

The USE_HORDE_BUILD and USE_HORDE_RUN variables can be used to add buildtime and runtime
dependencies on other Horde modules. See Mk/Uses/horde.mk for a complete list of available
modules.

{5l 76. Example Makefile for Horde Module

PORTNAME= Horde _Core
DISTVERSION= 2.14.0
CATEGORIES= devel www pear

MAINTAINER= horde@FreeBSD.org
COMMENT= Horde Core Framework libraries

OPTIONS_DEFINE= KOLAB SOCKETS
KOLAB_DESC= Enable Kolab server support
SOCKETS_DESC= Depend on sockets PHP extension

USES= horde
USE_PHP= session

USE_HORDE _BUILD= Horde _Role
USE_HORDE_RUN= Horde_Role Horde_History Horde_Pack \

Horde Text Filter Horde View

KOLAB_USE= HORDE_RUN=Horde Kolab_Server,Horde _Kolab_Session
SOCKETS_USE= PHP=sockets

.include <bsd.port.mk>

(r) As Horde modules are also PEAR modules they will also automatically be
- flavorized using PHP flavors.
6.17. Using Python

The Ports Collection supports parallel installation of multiple Python versions. Ports must use a
correct python interpreter, according to the user-settable PYTHON_VERSION. Most prominently, this
means replacing the path to python executable in scripts with the value of PYTHON_CMD.

Ports that install files under PYTHON_SITELIBDIR must use the pyXY- package name prefix, so their
package name embeds the version of Python they are installed into.

PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}

172

../flavors/index.html#flavors-auto-php

%% 33. Most Useful Variables for Ports That Use Python
USES=python

USE_PYTHON=distutils

USE_PYTHON=autoplist

USE_PYTHON=concurrent

USE_PYTHON=flavors

USE_PYTHON=optsuffix

PYTHON_PKGNAMEPREFIX

PYTHON_SITELIBDIR

PYTHONPREFIX_SITELIBDIR

PYTHON_CMD

The port needs Python. The minimal required
version can be specified with values such as
2.7+. Version ranges can also be specified by

separating two version numbers with a dash:
USES=python:3.2-3.3

Use Python distutils for configuring, compiling,
and installing. This is required when the port
comes with setup.py. This overrides the do-build
and do-install targets and may also override do-
configure if GNU_CONFIGURE is not defined.
Additionally, it implies USE_PYTHON=flavors.

Create the packaging list automatically. This also
requires USE_PYTHON=distutils to be set.

The port will use an unique prefix, typically
PYTHON_PKGNAMEPREFIX for certain directories,
such as EXAMPLESDIR and DOCSDIR and also will
append a suffix, the python version from
PYTHON_VER, to binaries and scripts to be
installed. This allows ports to be installed for
different Python versions at the same time,
which otherwise would install conflicting files.

The port does not use distutils but still supports
multiple Python versions. FLAVORS will be set to
the supported Python versions. See USES=python
and Flavors for more information.

If the current Python version is not the default
version, the port will gain
PKGNAMESUFFIX=${PYTHON_PKGNAMESUFFIX}. Only
useful with flavors.

Used as a PKGNAMEPREFIX to distinguish packages
for different Python versions. Example: py27-

Location of the site-packages tree, that contains
installation path of Python (usually LOCALBASE).
PYTHON_SITELIBDIR can be very useful when
installing Python modules.

The PREFIX-clean variant of
PYTHON_SITELIBDIR. Always use
%%PYTHON_SITELIBDIR%% in pkg-plist when
possible. The default value of

%%PYTHON_SITELIBDIR%% is
1ib/python%%PYTHON_VERSION%%/site-packages

Python interpreter command line, including
version number.

173

../flavors/index.html#flavors-auto-python
../flavors/index.html#flavors-auto-python
../flavors/index.html#flavors-auto-python

% 34. Python Module Dependency Helpers

PYNUMERIC Dependency line for numeric extension.

PYNUMPY Dependency line for the new numeric extension,
numpy. (PYNUMERIC is deprecated by upstream
vendor).

PYXML Dependency line for XML extension (not needed
for Python 2.0 and higher as it is also in base
distribution).

PY_ENUM34 Conditional dependency on devel/py-enum34

depending on the Python version.

PY_ENUM_COMPAT Conditional dependency on devel/py-enum-
compat depending on the Python version.

PY_PATHLIB Conditional dependency on devel/py-pathlib
depending on the Python version.

PY_IPADDRESS Conditional dependency on net/py-ipaddress
depending on the Python version.

PY_FUTURES Conditional dependency on devel/py-futures
depending on the Python version.

A complete list of available variables can be found in /usr/ports/Mk/Uses/python.mk.

All dependencies to Python ports wusing Python flavors (either with

o USE_PYTHON=distutils or USE_PYTHON=flavors) must have the Python flavor
appended to their origin using @${PY_FLAVOR}. See Makefile for a Simple Python
Module.

{5l 77. Makefile for a Simple Python Module

PORTNAME= sample
DISTVERSION= 1.2.3
CATEGORIES= devel

MAINTAINER= john@doe.t1d
COMMENT= Python sample module

RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}six>0:devel/py-six@${PY_FLAVOR}

USES= python
USE_PYTHON= autoplist distutils

.include <bsd.port.mk>

Some Python applications claim to have DESTDIR support (which would be required for staging) but
it is broken (Mailman up to 2.1.16, for instance). This can be worked around by recompiling the

174

https://cgit.freebsd.org/ports/tree/devel/py-enum34/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/py-enum-compat/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/py-enum-compat/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/py-pathlib/pkg-descr
https://cgit.freebsd.org/ports/tree/net/py-ipaddress/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/py-futures/pkg-descr
../flavors/index.html#flavors-auto-python

scripts. This can be done, for example, in the post-build target. Assuming the Python scripts are
supposed to reside in PYTHONPREFIX_SITELIBDIR after installation, this solution can be applied:

(cd ${STAGEDIR}${PREFIX} \
&& ${PYTHON_CMD} ${PYTHON_LIBDIR}/compileall.py \
-d ${PREFIX} -f ${PYTHONPREFIX_SITELIBDIR:S;${PREFIX}/;;})

This recompiles the sources with a path relative to the stage directory, and prepends the value of
PREFIX to the file name recorded in the byte-compiled output file by -d. -f is required to force
recompilation, and the :S;${PREFIX}/;; strips prefixes from the value of PYTHONPREFIX_SITELIBDIR to
make it relative to PREFIX.

6.18. Using Tcl/Tk

The Ports Collection supports parallel installation of multiple Tcl/Tk versions. Ports should try to
support at least the default Tcl/Tk version and higher with USES=tcl. It is possible to specify the
desired version of tcl by appending : _xx_, for example, USES=tc1:85.

% 35. The Most Useful Read-Only Variables for Ports That Use Tcl/Tk

TCL_VER chosen major.minor version of Tcl
TCLSH full path of the Tcl interpreter
TCL_LIBDIR path of the Tcl libraries
TCL_INCLUDEDIR path of the Tcl C header files
TK_VER chosen major.minor version of Tk
WISH full path of the Tk interpreter
TK_LIBDIR path of the Tk libraries
TK_INCLUDEDIR path of the Tk C header files

See the USES=tcl and USES=tk of Using USES Macros for a full description of those variables. A
complete list of those variables is available in /usr/ports/Mk/Uses/tcl.mk.

6.19. Using Ruby

Z 36. Useful Variables for Ports That Use Ruby

Variable Description

USE_RUBY Adds build and run dependencies on Ruby.
USE_RUBY_EXTCONF The port uses extconf.rb to configure.
USE_RUBY_SETUP The port uses setup.rb to configure.
RUBY_SETUP Override the name of the setup script from

setup.rb. Another common value is install.rb.

This table shows the selected variables available to port authors via the ports infrastructure. These

175

../uses/index.html#uses-tcl
../uses/index.html#uses-tk
../uses/index.html#uses
../uses/index.html#uses
../uses/index.html#uses

variables are used to install files into their proper locations. Use them in pkg-plist as much as
possible. Do not redefine these variables in the port.

2 37. Selected Read-Only Variables for Ports That Use Ruby

Variable Description Example value

RUBY_PKGNAMEPREFIX Used as a PKGNAMEPREFIX to ruby19-
distinguish packages for
different Ruby versions.

RUBY_VERSION Full version of Ruby in the form 1.9.3.484
of x.y.z[.pl.
RUBY_SITELIBDIR Architecture independent /usr/local/lib/ruby/site_ruby/
1.9

libraries installation path.

RUBY_SITEARCHLIBDIR Architecture dependent /usr/local/lib/ruby/site_ruby/

libraries installation path. 1.9/amd64-freebsd10

RUBY_MODDOCDIR Module documentation /usr/local/share/doc/ruby19/pa
installation path. tsy
RUBY_MODEXAMPLESDIR Module examples installation ~ /usr/local/share/examples/ruby
19/patsy

path.

A complete list of available variables can be found in /usr/ports/Mk/bsd.ruby.mk.

6.20. Using SDL

USE_SDL is used to autoconfigure the dependencies for ports which use an SDL based library like
devel/sdl12 and graphics/sdl_image.

These SDL libraries for version 1.2 are recognized:

e sdl: devel/sdl12

e console: devel/sdl _console
 gfx: graphics/sdl_gfx

* image: graphics/sdl_image

e mixer: audio/sdl_mixer

* mm: devel/sdlmm

* net: net/sdl_net

* pango: x11-toolkits/sdl_pango
e sound: audio/sdl_sound

o ttf: graphics/sdl_ttf
These SDL libraries for version 2.0 are recognized:

e sdl: devel/sd120

176

https://cgit.freebsd.org/ports/tree/devel/sdl12/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/sdl_image/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/sdl12/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/sdl_console/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/sdl_gfx/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/sdl_image/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/sdl_mixer/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/sdlmm/pkg-descr
https://cgit.freebsd.org/ports/tree/net/sdl_net/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-toolkits/sdl_pango/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/sdl_sound/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/sdl_ttf/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/sdl20/pkg-descr

gfx: graphics/sdl2_gfx
» image: graphics/sdl2_image

e mixer: audio/sdl2 _mixer

net: net/sdl2_net

ttf: graphics/sdl2_ttf

Therefore, if a port has a dependency on net/sdl_net and audio/sdl_mixer, the syntax will be:
USE_SDL= net mixer

The dependency devel/sdl12, which is required by net/sdl_net and audio/sdl_mixer, is automatically

added as well.

Using USE_SDL with entries for SDL 1.2, it will automatically:

* Add a dependency on sdl12-config to BUILD_DEPENDS
* Add the variable SDL_CONFIG to CONFIGURE_ENV
* Add the dependencies of the selected libraries to LIB_DEPENDS

Using USE_SDL with entries for SDL 2.0, it will automatically:

* Add a dependency on sdl2-config to BUILD_DEPENDS
* Add the variable SDL2_CONFIG to CONFIGURE_ENV
* Add the dependencies of the selected libraries to LIB_DEPENDS

6.21. Using wxWidgets

This section describes the status of the wxWidgets libraries in the ports tree and its integration with
the ports system.

6.21.1. Introduction

There are many versions of the wxWidgets libraries which conflict between them (install files
under the same name). In the ports tree this problem has been solved by installing each version
under a different name using version number suffixes.

The obvious disadvantage of this is that each application has to be modified to find the expected
version. Fortunately, most of the applications call the wx-config script to determine the necessary
compiler and linker flags. The script is named differently for every available version. Majority of
applications respect an environment variable, or accept a configure argument, to specify which wx-
config script to call. Otherwise they have to be patched.

6.21.2. Version Selection

To make the port use a specific version of wxWidgets there are two variables available for defining

177

https://cgit.freebsd.org/ports/tree/graphics/sdl2_gfx/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/sdl2_image/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/sdl2_mixer/pkg-descr
https://cgit.freebsd.org/ports/tree/net/sdl2_net/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/sdl2_ttf/pkg-descr
https://cgit.freebsd.org/ports/tree/net/sdl_net/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/sdl_mixer/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/sdl12/pkg-descr
https://cgit.freebsd.org/ports/tree/net/sdl_net/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/sdl_mixer/pkg-descr

(if only one is defined the other will be set to a default value):

2 38. Variables to Select wxWidgets Versions

Variable Description Default value
USE_WX List of versions the port can use All available versions
USE_WX_NOT List of versions the port cannot None

use

The available wxWidgets versions and the corresponding ports in the tree are:

2 39. Available wxWidgets Versions

Version Port
2.8 x11-toolkits/wxgtk28
3.0 x11-toolkits/wxgtk30

The variables in Variables to Select wxWidgets Versions can be set to one or more of these
combinations separated by spaces:

2 40. wxWidgets Version Specifications

Description Example
Single version 2.8
Ascending range 2.8+
Descending range 3.0-

Full range (must be ascending) 2.8-3.0

There are also some variables to select the preferred versions from the available ones. They can be
set to a list of versions, the first ones will have higher priority.

% 41. Variables to Select Preferred wxWidgets Versions

Name Designed for
WANT_WX_VER the port
WITH_WX_VER the user

6.21.3. Component Selection

There are other applications that, while not being wxWidgets libraries, are related to them. These
applications can be specified in WX_COMPS. These components are available:

2 42. Available wxWidgets Components

Name Description Version restriction
WX main library none
contrib contributed libraries none

178

https://cgit.freebsd.org/ports/tree/x11-toolkits/wxgtk28/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-toolkits/wxgtk30/pkg-descr

Name Description Version restriction

python wxPython (Python bindings) ~ 2.8-3.0

The dependency type can be selected for each component by adding a suffix separated by a
semicolon. If not present then a default type will be used (see Default wxWidgets Dependency
Types). These types are available:

% 43. Available wxWidgets Dependency Types
Name Description

build Component is required for building, equivalent
to BUILD_DEPENDS

run Component is required for running, equivalent
to RUN_DEPENDS

Lib Component is required for building and
running, equivalent to LIB_DEPENDS

The default values for the components are detailed in this table:

= 44. Default wxWidgets Dependency Types

Component Dependency type
WX 1ib
contrib 1ib
python run
mozilla 1ib
svg 1ib

{5l 78. Selecting wxWidgets Components

This fragment corresponds to a port which uses wxWidgets version 2.4 and its contributed
libraries.

USE_WX= 2.8
WX _COMPS= wx contrib

6.21.4. Detecting Installed Versions

To detect an installed version, define WANT_WX. If it is not set to a specific version then the
components will have a version suffix. HAVE_WX will be filled after detection.

179

{5l 79. Detecting Installed wxWidgets Versions and Components

This fragment can be used in a port that uses wxWidgets if it is installed, or an option is
selected.

WANT_WX= yes
.include <bsd.port.pre.mk>

.if defined(WITH_WX) || !empty(PORT_OPTIONS:MWX) || 'empty(HAVE_WX:Mwx-2.8)
USE_WX= 2.8

CONFIGURE _ARGS+= --enable-wx

.endif

This fragment can be used in a port that enables wxPython support if it is installed or if an
option is selected, in addition to wxWidgets, both version 2.8.

USE_WX= 2.8
WX_COMPS= wx
WANT _WX= 2.8

.include <bsd.port.pre.mk>

.if defined(WITH_WXPYTHON) || !empty(PORT_OPTIONS:MWXPYTHON) ||
lempty(HAVE_WX:Mpython)

WX_COMPS+= python

CONFIGURE_ARGS+= --enable-wxpython

.endif

6.21.5. Defined Variables

These variables are available in the port (after defining one from Variables to Select wxWidgets
Versions).

2 45. Variables Defined for Ports That Use wxWidgets

Name Description

WX_CONFIG The path to the wxWidgets wx-config" script
(with different name)

WXRC_CMD The path to the wxWidgets wxrc " program
(with different name)

WX_VERSION The wxWidgets version that is going to be used
(for example, 2.6)

180

6.21.6. Processing in bsd.port.pre.mk

Define WX_PREMK to be able to use the variables right after including bsd.port.pre.mk.

When defining WX_PRENK, then the version, dependencies, components and defined
variables will not change if modifying the wxWidgets port variables after
including bsd.port.pre.mk.

{5 80. Using wxWidgets Variables in Commands

This fragment illustrates the use of WX_PREMK by running the wx-config script to obtain the full
version string, assign it to a variable and pass it to the program.

USE_WX= 2.8
WX_PREMK= yes

.include <bsd.port.pre.mk>

Lif exists(${WX_CONFIG})
VER_STR!= ${WX_CONFIG} --release

PLIST _SUB+= VERSION="${VER_STR}"
.endif

o The wxWidgets variables can be safely used in commands when they are inside
targets without the need of WX_PREMK.
6.21.7. Additional configure Arguments

Some GNU configure scripts cannot find wxWidgets with just the WX_CONFIG environment variable
set, requiring additional arguments. WX_CONF_ARGS can be used for provide them.

% 46. Legal Values for WX_CONF_ARGS

Possible value Resulting argument
absolute --with-wx-config=${WX_CONFIG}
relative --with-wx=${LOCALBASE} --with-wx

-config=${WX_CONFIG:T}

6.22. Using Lua

This section describes the status of the Lua libraries in the ports tree and its integration with the
ports system.

181

6.22.1. Introduction

There are many versions of the Lua libraries and corresponding interpreters, which conflict
between them (install files under the same name). In the ports tree this problem has been solved by
installing each version under a different name using version number suffixes.

The obvious disadvantage of this is that each application has to be modified to find the expected
version. But it can be solved by adding some additional flags to the compiler and linker.

Applications that use Lua should normally build for just one version. However, loadable modules
for Lua are built in a separate flavor for each Lua version that they support, and dependencies on
such modules should specify the flavor using the @${LUA_FLAVOR} suffix on the port origin.

6.22.2. Version Selection

A port using Lua should have a line of this form:
USES= Tlua

If a specific version of Lua, or range of versions, is needed, it can be specified as a parameter in the
form XY (which may be used multiple times), XY+, -XY, or XY-ZA. The default version of Lua as set via
DEFAULT_VERSIONS will be used if it falls in the requested range, otherwise the closest requested
version to the default will be used. For example:

USES= 1ua:52-53

Note that no attempt is made to adjust the version selection based on the presence of any already-
installed Lua version.

The XY+ form of version specification should not be used without careful

e consideration; the Lua API changes to some extent in every version, and
configuration tools like CMake or Autoconf will often fail to work on future
versions of Lua until updated to do so.

6.22.3. Configuration and Compiler flags

Software that uses Lua may have been written to auto-detect the Lua version in use. In general
ports should override this assumption, and force the use of the specific Lua version selected as
described above. Depending on the software being ported, this might require any or all of:

» Using LUA_VER as part of a parameter to the software’s configuration script via CONFIGURE_ARGS or
CONFIGURE_ENV (or equivalent for other build systems);

* Adding -I${LUA_INCDIR}, -L${LUA_LIBDIR}, and -1lua-${LUA_VER} to CFLAGS, LDFLAGS, LIBS
respectively as appropriate;

» Patch the software’s configuration or build files to select the correct version.

182

6.22.4. Version Flavors

A port which installs a Lua module (rather than an application that simply makes use of Lua)
should build a separate flavor for each supported Lua version. This is done by adding the module
parameter:

USES= lua:module

A version number or range of versions can be specified as well; use a comma to separate
parameters.

Since each flavor must have a different package name, the variable LUA_PKGNAMEPREFIX is provided
which will be set to an appropriate value; the intended usage is:

PKGNAMEPREFIX= ${LUA_PKGNAMEPREFIX}

Module ports should normally install files only to LUA_MODLIBDIR, LUA_MODSHAREDIR, LUA_DOCSDIR, and
LUA_EXAMPLESDIR, all of which are set up to refer to version-specific subdirectories. Installing any
other files must be done with care to avoid conflicts between versions.

A port (other than a Lua module) which wishes to build a separate package for each Lua version
should use the flavors parameter:

USES= 1lua:flavors

This operates the same way as the module parameter described above, but without the assumption
that the package should be documented as a Lua module (so LUA_DOCSDIR and LUA_EXAMPLESDIR are
not defined by default). However, the port may choose to define LUA_DOCSUBDIR as a suitable
subdirectory name (usually the port’s PORTNAME as long as this does not conflict with the PORTNAME of
any module), in which case the framework will define both LUA_DOCSDIR and LUA_EXAMPLESDIR.

As with module ports, a flavored port should avoid installing files that would conflict between
versions. Typically this is done by adding LUA_VER_STR as a suffix to program names (e.g. using
uniquefiles), and otherwise using either LUA_VER or LUA_VER_STR as part of any other files or
subdirectories used outside of LUA_MODLIBDIR and LUA_MODSHAREDIR.

6.22.5. Defined Variables
These variables are available in the port.

£z 47. Variables Defined for Ports That Use Lua
Name Description

LUA_VER The Lua version that is going to be used (for
example, 5.1)

183

../uses/index.html#uses-uniquefiles

Name
LUA_VER_STR

LUA_FLAVOR

LUA_BASE

LUA_PREFIX

LUA_INCDIR

LUA_LIBDIR
LUA_REFMODLIBDIR

LUA_REFMODSHAREDIR

LUA_MODLIBDIR

LUA_MODSHAREDIR

LUA_PKGNAMEPREFIX
LUA_CMD
LUAC_CMD

Description

The Lua version without the dots (for example,
51)

The flavor name corresponding to the selected
Lua version, to be used for specifying
dependencies

The prefix that should be used to locate Lua (and
components) that are already installed

The prefix where Lua (and components) are to
be installed by this port

The directory where Lua header files are
installed

The directory where Lua libraries are installed

The directory where Lua module libraries (.so)
that are already installed are to be found

The directory where Lua modules (.lua) that are
already installed are to be found

The directory where Lua module libraries (.so)
are to be installed by this port

The directory where Lua modules (.lua) are to be
installed by this port

The package name prefix used by Lua modules
The name of the Lua interpreter (e.g. 1ua53)

The name of the Lua compiler (e.g. Lluac53)

These additional variables are available for ports that specified the module parameter:

% 48. Variables Defined for Lua Module Ports

Name
LUA_DOCSDIR

LUA_EXAMPLESDIR

6.22.6. Examples

184

Description

the directory to which the module’s
documentation should be installed.

the directory to which the module’s example
files should be installed.

{5l 81. Makefile for an application using Lua

This example shows how to reference a Lua module required at run time. Notice that the
reference must specify a flavor.

PORTNAME= sample
DISTVERSION= 1.2.3
CATEGORIES= whatever

MAINTAINER= john@doe.tld
COMMENT= Sample

RUN_DEPENDS= ${LUA_REFMODLIBDIR}/1peg.so:devel/lua-1peg@${LUA_FLAVOR}
USES= lua

.include <bsd.port.mk>

{5l 82. Makefile for a simple Lua module

PORTNAME= sample

DISTVERSION= 1.2.3

CATEGORIES= whatever

PKGNAMEPREFIX= ${LUA_PKGNAMEPREFIX}

MAINTAINER= john@doe.tld
COMMENT= Sample

USES= lua:module
DOCSDIR= ${LUA_DOCSDIR}

.include <bsd.port.mk>

6.23. Using 1conv
FreeBSD has a native iconv in the operating system.
For software that needs iconv, define USES=iconv.

When a port defines USES=iconv, these variables will be available:

185

Variable name Purpose Port iconv (when Base iconv
using WCHAR_T or

//[TRANSLIT
extensions)
ICONV_CMD Djrectory where the ${LOCALBASE}/b1 n/iconv /usr/bin/iconv
iconv binary resides
ICONV_LIB 1d argument to link to ~ -Lliconv (empty)
libiconv (if needed)
ICONV_PREFIX Directory where the ~ ${LOCALBASE} Jusr
iconv implementation
resides (useful for
configure scripts)
ICONV_CONFIGURE_ARG Preconstructed --with-libiconv (empty)

configure argument for ~Pefi x=${LOCALBASE}

configure scripts

ICONV_CONFIGURE_BASE Preconstructed --with (empty)

configure argument for ~10iconv=${LOCALBASE}

configure scripts

These two examples automatically populate the variables with the correct value for systems using
converters/libiconv or the native iconv respectively:

{5 83. Simple iconv Usage

USES= iconv
LDFLAGS+= -L${LOCALBASE}/1ib ${ICONV_LIB}

{51 84. iconv Usage with configure

USES= iconv
CONFIGURE_ARGS+=${ICONV_CONFIGURE ARG}

As shown above, ICONV_LIB is empty when a native iconv is present. This can be used to detect the
native iconv and respond appropriately.

Sometimes a program has an 1d argument or search path hardcoded in a Makefile or configure
script. This approach can be used to solve that problem:

186

https://cgit.freebsd.org/ports/tree/converters/libiconv/pkg-descr

{5l 85. Fixing Hardcoded -1iconv

USES= iconv

post-patch:
@${REINPLACE_CMD} -e 's/-liconv/${ICONV_LIB}/' ${WRKSRC}/Makefile

In some cases it is necessary to set alternate values or perform operations depending on whether
there is a native iconv. bsd.port.pre.mk must be included before testing the value of ICONV_LIB:

{5 86. Checking for Native iconv Availability

USES= iconv
.include <bsd.port.pre.mk>

post-patch:
.if empty(ICONV_LIB)

native iconv detected

@${REINPLACE_CMD} -e 's|iconv||' ${WRKSRC}/Config.sh
.endif

.include <bsd.port.post.mk>

6.24. Using Xfce

Ports that need Xfce libraries or applications set USES=xfce.

Specific Xfce library and application dependencies are set with values assigned to USE_XFCE. They
are defined in /usr/ports/Mk/Uses/xfce.mKk. The possible values are:

Values of USE_XFCE

garcon

sysutils/garcon

libexo
x11/libexo

libgui
x11-toolkits/libxfce4gui

libmenu

x11/libxfcedmenu

187

https://cgit.freebsd.org/ports/tree/sysutils/garcon/pkg-descr
https://cgit.freebsd.org/ports/tree/x11/libexo/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-toolkits/libxfce4gui/pkg-descr
https://cgit.freebsd.org/ports/tree/x11/libxfce4menu/pkg-descr

libutil

x11/libxfce4util

panel

x11-wm/xfce4-panel

thunar

x11-fm/thunar

xfconf

x11/xfced-conf

{5 87. USES=xfce Example

USES=

xfce

USE_XFCE= libmenu

{5 88. Using Xfce’s Own GTK2 Widgets

In this example, the ported application uses the GTK2-specific widgets x11/libxfce4dmenu and
x11/xfce4-conf.

USES=

xfce:gtk2

USE_XFCE= 1ibmenu xfconf

188

Xfce components included this way will automatically include any dependencies
they need. It is no longer necessary to specify the entire list. If the port only needs
x11-wm/xfce4-panel, use:

USES= xfce
USE_XFCE= panel

There is no need to list the components x11-wm/xfce4-panel needs itself like this:

USES= xfce
USE_XFCE= 1libexo libmenu libutil panel

However, Xfce components and non-Xfce dependencies of the port must be
included explicitly. Do not count on an Xfce component to provide a sub-
dependency other than itself for the main port.

https://cgit.freebsd.org/ports/tree/x11/libxfce4util/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-wm/xfce4-panel/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-fm/thunar/pkg-descr
https://cgit.freebsd.org/ports/tree/x11/xfce4-conf/pkg-descr
https://cgit.freebsd.org/ports/tree/x11/libxfce4menu/pkg-descr
https://cgit.freebsd.org/ports/tree/x11/xfce4-conf/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-wm/xfce4-panel/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-wm/xfce4-panel/pkg-descr

6.25. Using Databases

Use one of the USES macros from Database USES Macros to add a dependency on a database.

& 49. Database USES Macros

Database USES Macro
Berkeley DB bdb
MariaDB, MySQL, Percona mysql
PostgreSQL pgsql

SQLite sqlite

{5l 89. Using Berkeley DB 6

USES= bdb:6

See bdb for more information.

{5 90. Using MySQL

When a port needs the MySQL client library add

USES= mysql

See mysql for more information.

{5 91. Using PostgreSQL

When a port needs the PostgreSQL server version 9.6 or later add

USES= pgsql:9.6+
WANT_PGSQL= server

See pgsql for more information.

{5 92. Using SQLite 3

USES= sqlite:3

See sqlite for more information.

189

../uses/index.html#uses-bdb
../uses/index.html#uses-mysql
../uses/index.html#uses-pgsql
../uses/index.html#uses-sqlite
../uses/index.html#uses-bdb
../uses/index.html#uses-mysql
../uses/index.html#uses-pgsql
../uses/index.html#uses-sqlite

6.26. Starting and Stopping Services (rc Scripts)

rc.d scripts are used to start services on system startup, and to give administrators a standard way
of stopping, starting and restarting the service. Ports integrate into the system rc.d framework.
Details on its usage can be found in the rc.d Handbook chapter. Detailed explanation of the
available commands is provided in rc(8) and rc.subr(8). Finally, there is an article on practical
aspects of rc.d scripting.

With a mythical port called doorman, which needs to start a doormand daemon. Add the following
to the Makefile:

USE_RC_SUBR= doormand

Multiple scripts may be listed and will be installed. Scripts must be placed in the files subdirectory
and a .in suffix must be added to their filename. Standard SUB_LIST expansions will be ran against
this file. Use of the %%PREFIX%% and %%LOCALBASE%% expansions is strongly encouraged as well. More
on SUB_LIST in the relevant section.

As of FreeBSD 6.1-RELEASE, local rc.d scripts (including those installed by ports) are included in the
overall rcorder(8) of the base system.

An example simple rc.d script to start the doormand daemon:

190

https://docs.freebsd.org/en/books/handbook/#configtuning-rcd
https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc.subr&sektion=8&format=html
https://docs.freebsd.org/en/articles/rc-scripting/
../pkg-files/index.html#using-sub-files
https://www.freebsd.org/cgi/man.cgi?query=rcorder&sektion=8&format=html

#!/bin/sh
$FreeBSD$

PROVIDE: doormand
REQUIRE: LOGIN
KEYWORD: shutdown

Add these lines to /etc/rc.conf.local or /etc/rc.conf
to enable this service:

doormand_enable (bool): Set to NO by default.
Set it to YES to enable doormand.

doormand_config (path): Set to %%PREFIX%%/etc/doormand/doormand.cf
by default.

= R o o R H o R o = R = R

. /etc/rec.subr

name=doormand
rcvar=doormand_enable

load_rc_config $name

: ${doormand_enable:="N0"}
: ${doormand_config="%%PREFIX%%/etc/doormand/doormand.cf"}

command=%%PREFIX%%/sbin/${name}
pidfile=/var/run/${name}.pid

command_args="-p $pidfile -f $doormand_config"

run_rc_command "$1"

Unless there is a very good reason to start the service earlier, or it runs as a particular user (other
than root), all ports scripts must use:

REQUIRE: LOGIN

If the startup script launches a daemon that must be shutdown, the following will trigger a stop of
the service on system shutdown:

KEYWORD: shutdown

If the script is not starting a persistent service this is not necessary.

For optional configuration elements the "=" style of default variable assignment is preferable to the
":=" style here, since the former sets a default value only if the variable is unset, and the latter sets

191

one if the variable is unset or null. A user might very well include something like:

doormand_flags=

in their rc.conflocal, and a variable substitution using ":=" would inappropriately override the
user’s intention. The _enable variable is not optional, and must use the ":" for the default.

Ports must not start and stop their services when installing and deinstalling. Do
not abuse the plist keywords described in the @preexec command,@postexec

o command,@preunexec command,@postunexec command section by running
commands that modify the currently running system, including starting or
stopping services.

6.26.1. Pre-Commit Checklist

Before contributing a port with an rc.d script, and more importantly, before committing one, please
consult this checklist to be sure that it is ready.

The devel/rclint port can check for most of these, but it is not a substitute for proper review.

1.

192

If this is a new file, does it have a .sh extension? If so, that must be changed to just file.in since
rc.d files may not end with that extension.

Does the file have a $§FreeBSD$ tag?

Do the name of the file (minus .in), the PROVIDE line, and $ name all match? The file name
matching PROVIDE makes debugging easier, especially for rcorder(8) issues. Matching the file
name and " $ name makes it easier to figure out which variables are relevant in rc.confl.local].
It is also a policy for all new scripts, including those in the base system.

Is the REQUIRE line set to LOGIN? This is mandatory for scripts that run as a non-root user. If it
runs as root, is there a good reason for it to run prior to LOGIN? If not, it must run after so that
local scrips can be loosely grouped to a point in rcorder(8) after most everything in the base is
already running.

Does the script start a persistent service? If so, it must have KEYWORD: shutdown.

Make sure there is no KEYWORD: FreeBSD present. This has not been necessary nor desirable for
years. It is also an indication that the new script was copy/pasted from an old script, so extra
caution must be given to the review.

If the script uses an interpreted language like perl, python, or ruby, make certain that
command_interpreter is set appropriately, for example, for Perl, by adding PERL=${PERL} to
SUB_LIST and using %%PERL%%. Otherwise,

service name stop

will probably not work properly. See service(8) for more information.

Have all occurrences of /usr/local been replaced with %%PREFIX%%?

../plist/index.html#plist-keywords-base-exec
../plist/index.html#plist-keywords-base-exec
https://cgit.freebsd.org/ports/tree/devel/rclint/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=rcorder&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rcorder&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=service&sektion=8&format=html

9. Do the default variable assignments come after load_rc_config?

10. Are there default assignments to empty strings? They should be removed, but double-check that
the option is documented in the comments at the top of the file.

11. Are things that are set in variables actually used in the script?

12. Are options listed in the default name™_flags™ things that are actually mandatory? If so, they
must be in command_args. -d is a red flag (pardon the pun) here, since it is usually the option to
"daemonize" the process, and therefore is actually mandatory.

13. _name__flags must never be included in command_args (and vice versa, although that error is less
common).

14. Does the script execute any code unconditionally? This is frowned on. Usually these things must
be dealt with through a start_precmd.

15. All boolean tests must use the checkyesno function. No hand-rolled tests for [Yy][Ee][Ss], etc.

16. If there is a loop (for example, waiting for something to start) does it have a counter to
terminate the loop? We do not want the boot to be stuck forever if there is an error.

17. Does the script create files or directories that need specific permissions, for example, a pid that
needs to be owned by the user that runs the process? Rather than the traditional touch(1)
/chown(8)/chmod(1) routine, consider using install(1) with the proper command line arguments
to do the whole procedure with one step.

6.27. Adding Users and Groups

Some ports require a particular user account to be present, usually for daemons that run as that
user. For these ports, choose a unique UID from 50 to 999 and register it in ports/UIDs (for users)
and ports/GIDs (for groups). The unique identification should be the same for users and groups.

Please include a patch against these two files when requiring a new user or group to be created for
the port.

Then use USERS and GROUPS in Makefile, and the user will be automatically created when installing
the port.

USERS= pulse
GROUPS= pulse pulse-access pulse-rt

The current list of reserved UIDs and GIDs can be found in ports/UIDs and ports/GIDs.

6.28. Ports That Rely on Kernel Sources

Some ports (such as kernel loadable modules) need the kernel source files so that the port can
compile. Here is the correct way to determine if the user has them installed:

USES= kmod

193

https://www.freebsd.org/cgi/man.cgi?query=touch&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chown&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=install&sektion=1&format=html

Apart from this check, the kmod feature takes care of most items that these ports need to take into
account.

6.29. Go Libraries

Ports must not package or install Go libs or source code. Go ports must fetch the required deps at
the normal fetch time and should only install the programs and things users need, not the things Go
developers would need.

Ports should (in order of preference):

» Use vendored dependencies included with the package source.
* Fetch the versions of deps specified by upstream (in the case of go.mod, vendor.json or similar).

* As a last resort (deps are not included nor versions specified exactly) fetch versions of
dependencies available at the time of upstream development/release.

6.30. Haskell Libraries

Just like in case of Go language, Ports must not package or install Haskell libraries. Haskell ports
must link statically to their dependencies and fetch all distribution files on fetch stage.

6.31. Shell Completion Files

Many modern shells (including bash, fish, tcsh and zsh) support parameter and/or option tab-
completion. This support usually comes from completion files, which contain the definitions for
how tab completion will work for a certain command. Ports sometimes ship with their own
completion files, or porters may have created them themselves.

When available, completion files should always be installed. It is not necessary to make an option
for it. If an option is used, though, always enable it in OPTIONS_DEFAULT.

2 50. Shell completion file paths

bash ${PREFIX}/etc/bash_completion.d
fish ${PREFIX}/share/fish/vendor_completions.d
zsh ${PREFIX}/share/zsh/site-functions

Do not register any dependencies on the shells themselves.

194

Chapter 7. Flavors

7.1. An Introduction to Flavors

Flavors are a way to have multiple variations of a port. The port is built multiple times, with
variations.

For example, a port can have a normal version with many features and quite a few dependencies,
and a light "lite" version with only basic features and minimal dependencies.

Another example could be, a port can have a GTK flavor and a QT flavor, depending on which
toolkit it uses.

7.2. Using FLAVORS

To declare a port having multiple flavors, add FLAVORS to its Makefile. The first flavor in FLAVORS is
the default flavor.

It can help simplify the logic of the Makefile to also define FLAVOR as:

@,

d FLAVOR?= ${FLAVORS:[11}
o To distinguish flavors from options, which are always uppercase letters, flavor
names can only contain lowercase letters, numbers, and the underscore _.

{5l 93. Basic Flavors Usage

If a port has a "lite" slave port, the slave port can be removed, and the port can be converted to
flavors with:

FLAVORS= default lite
lite_PKGNAMESUFFIX= -lite
[...]

.if ${FLAVOR:U} !'= lite
[enable non lite features]
.endif

195

{5l 94. Another Basic Flavors Usage

If a port has a -nox11 slave port, the slave port can be removed, and the port can be converted
to flavors with:

FLAVORS= x11 nox11

FLAVOR?= ${FLAVORS:[11}
nox11_PKGNAMESUFFIX= -nox11
[...]

.if ${FLAVOR} == x11

[enable x11 features]

.endif

196

{5 95. More Complex Flavors Usage

Here is a slightly edited excerpt of what is present in devel/libpeas, a port that uses the Python

flavors. With the default Python 2 and 3 versions being 2.7 and 3.6, it will automatically get
FLAVORS=py27 py36

USES= gnome python
USE_PYTHON= flavors

.if ${FLAVOR:Upy27:Mpy2*}
USE_GNOME= pygobject3

CONFIGURE_ARGS+= --enable-python2 --disable-python3

BUILD_WRKSRC= ${WRKSRC}/loaders/python
INSTALL_WRKSRC= ${WRKSRC}/loaders/python
.else # py3*

USE_GNOME+= py3gobject3

CONFIGURE_ARGS+= --disable-python2 --enable-python3 \
ac_cv_path_PYTHON3_CONFIG=${LOCALBASE}/bin/python${PYTHON_VER}-config

BUILD_WRKSRC= ${WRKSRC}/loaders/python3
INSTALL_WRKSRC= ${WRKSRC}/loaders/python3
.endif

py34_PLIST= ${.CURDIR}/pkg-plist-py3
py35_PLIST= ${.CURDIR}/pkg-plist-py3
py36_PLIST= ${.CURDIR}/pkg-plist-py3

This port does not use USE_PYTHON=distutils but needs Python flavors anyway. To guard against
FLAVOR being empty, which would cause a make(1) error, use ${FLAVOR:U} in string comparisons
instead of ${FLAVOR}. The Gnome Python gobject3 bindings have two different names, one for
Python 2, pygobject3 and one for Python 3, py3gobject3. The configure script has to run in
${WRKSRC}, but we are only interested in building and installing the Python 2 or Python 3
parts of the software, so set the build and install base directories appropriately. Hint about the
correct Python 3 config script path name. The packing list is different when the built with
Python 3. As there are three possible Python 3 versions, set PLIST for all three using the helper.

7.2.1. Flavors Helpers
To make the Makefile easier to write, a few flavors helpers exist.
This list of helpers will set their variable:

e flavor__PKGNAMEPREFIX
e flavor__PKGNAMESUFFIX
e flavor__PLIST

197

https://cgit.freebsd.org/ports/tree/devel/libpeas/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html

e flavor__DESCR
This list of helpers will append to their variable:

o _flavor__CONFLICTS

o _flavor__CONFLICTS_BUILD

o _flavor__CONFLICTS_INSTALL
o _flavor__PKG_DEPENDS

o _flavor__EXTRACT_DEPENDS

o _flavor__PATCH_DEPENDS

_flavor__FETCH_DEPENDS

_flavor__BUILD_DEPENDS
o _flavor__LIB_DEPENDS
» _flavor__RUN_DEPENDS

_flavor__TEST_DEPENDS

{5 96. Flavor Specific PKGNAME

As all packages must have a different package name, flavors must change theirs, using
_flavorPKGNAMEPREFIX and _flavorPKGNAMESUFFIX makes this easy:

FLAVORS= normal Llite
1lite PKGNAMESUFFIX= -lite

7.3. USES=php and Flavors

When using php with one of these arguments, phpize, ext, zend, or pecl, the port will automatically
have FLAVORS filled in with the PHP versions it supports.

198

../uses/index.html#uses-php

{5 97. Simple USES=php Extension

This will generate package for all the supported versions:

PORTNAME= some-ext
PORTVERSION= 0.0.1
PKGNAMEPREFIX= ${PHP_PKGNAMEPREFIX}

USES= php:ext
This will generate package for all the supported versions but 7.2:

PORTNAME= some-ext
PORTVERSION= 0.0.1
PKGNAMEPREFIX= ${PHP_PKGNAMEPREFIX}

USES= php:ext
IGNORE_WITH_PHP= 72

7.3.1. PHP Flavors with PHP Applications
PHP applications can also be flavorized.

This allows generating packages for all PHP versions, so that users can use them with whatever
version they need on their servers.

o PHP applications that are flavorized must append PHP_PKGNAMESUFFIX to their
package names.

{5 98. Flavorizing a PHP Application

Adding Flavors support to a PHP application is straightforward:

PKGNAMESUFFIX= ${PHP_PKGNAMESUFFIX}

USES= php:flavors

(r') When adding a dependency on a PHP flavored port, use @${PHP_FLAVOR}. Never use
- FLAVOR directly.

7.4. USES=python and Flavors

When using python and USE_PYTHON=distutils, the port will automatically have FLAVORS filled in with
the Python versions it supports.

199

../uses/index.html#uses-python

{5 99. Simple USES=python

Supposing the current Python supported versions are 2.7, 3.4, 3.5, and 3.6, and the default
Python 2 and 3 versions are 2.7 and 3.6, a port with:

USES= python
USE_PYTHON= distutils

Will get these flavors: py27, and py36.

USES= python
USE_PYTHON= distutils allflavors

Will get these flavors: py27, py34, py35 and py36.

{5l 100. USES=python with Version Requirements

Supposing the current Python supported versions are 2.7, 3.4, 3.5, and 3.6, and the default
Python 2 and 3 versions are 2.7 and 3.6, a port with:

USES= python:-3.5
USE_PYTHON= distutils

Will get this flavor: py27.

USES= python:-3.5
USE_PYTHON= distutils allflavors

Will get these flavors: py27, py34, and py35.

USES= python:3.4+
USE_PYTHON= distutils

Will get this flavor: py36.

USES= python:3.4+
USE_PYTHON= distutils allflavors

Will get these flavors: py34, py35, and py36.

PY_FLAVOR is available to depend on the correct version of Python modules. All dependencies on
flavored Python ports should use PY_FLAVOR, and not FLAVOR directly..

200

{5l 101. For a Port Not Using distutils

If the default Python 3 version is 3.6, the following will set PY_FLAVOR to py36:

RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}mutagen>@:audio/py-mutagen@${PY_FLAVOR}

USES= python:3.5+

7.5. USES=1ua and Flavors

When using lua:module or lua:flavors, the port will automatically have FLAVORS filled in with the
Lua versions it supports. However, it is not expected that ordinary applications (rather than Lua
modules) should use this feature; most applications that embed or otherwise use Lua should simply
use USES=1ua.

LUA_FLAVOR is available (and must be used) to depend on the correct version of dependencies
regardless of whether the port used the flavors or module parameters.

See Using Lua for further information.

201

../uses/index.html#uses-lua
../uses/index.html#uses-lua
../special/index.html#using-lua

Chapter 8. Advanced pkg-plist Practices

8.1. Changing pkg-plist Based on Make Variables

Some ports, particularly the p5- ports, need to change their pkg-plist depending on what options
they are configured with (or version of perl, in the case of p5- ports). To make this easy, any
instances in pkg-plist of %%0SREL%%, %%PERL_VER%%, and %%PERL_VERSION%% will be substituted
appropriately. The value of %%0SREL%% is the numeric revision of the operating system (for example,
4.9). %%PERL_VERSION%% and %%PERL_VER%% is the full version number of perl (for example, 5.8.9).
Several other %%VARS%% related to port’s documentation files are described in the relevant section.

To make other substitutions, set PLIST_SUB with a list of VAR=VALUE pairs and instances of %%VAR%% will
be substituted with VALUE in pkg-plist.

For instance, if a port installs many files in a version-specific subdirectory, use a placeholder for the
version so that pkg-plist does not have to be regenerated every time the port is updated. For
example, set:

OCTAVE_VERSION= ${PORTREVISION}
PLIST_SUB= OCTAVE_VERSION=${OCTAVE_VERSION}

in the Makefile and use %%0CTAVE_VERSION%% wherever the version shows up in pkg-plist. When the
port is upgraded, it will not be necessary to edit dozens (or in some cases, hundreds) of lines in pkg-
plist.

If files are installed conditionally on the options set in the port, the usual way of handling it is
prefixing pkg-plist lines with a %%0PT%% for lines needed when the option is enabled, or %%N0_0PT%%
when the option is disabled, and adding OPTIONS_SUB=yes to the Makefile. See OPTIONS_SUB for more
information.

For instance, if there are files that are only installed when the X11 option is enabled, and Makefile
has:

OPTIONS_DEFINE= X11
OPTIONS_SUB= yes

In pkg-plist, put %%X11%% in front of the lines only being installed when the option is enabled, like
this :

%%X11%%bin/foo-qui

This substitution will be done between the pre-install and do-install targets, by reading from
PLIST and writing to TMPPLIST (default: WRKDIR/.PLIST.mktmp). So if the port builds PLIST on the
fly, do so in or before pre-install. Also, if the port needs to edit the resulting file, do so in post-
install to a file named TMPPLIST.

202

../makefiles/index.html#install-documentation
../makefiles/index.html#options_sub

Another way of modifying a port’s packing list is based on setting the variables PLIST_FILES and
PLIST_DIRS. The value of each variable is regarded as a list of pathnames to write to TMPPLIST along
with PLIST contents. While names listed in PLIST_FILES and PLIST_DIRS are subject to %%VAR%%
substitution as described above, it is better to use the ${VAR} directly. Except for that, names from
PLIST_FILES will appear in the final packing list unchanged, while @dir will be prepended to names
from PLIST_DIRS. To take effect, PLIST FILES and PLIST_DIRS must be set before TMPPLIST is written,
thatis, in pre-install or earlier.

From time to time, using OPTIONS_SUB is not enough. In those cases, adding a specific TAG to PLIST_SUB
inside the Makefile with a special value of @comment, makes package tools to ignore the line. For
instance, if some files are only installed when the X11 option is on and the architecture is 1386:

.include <bsd.port.pre.mk>

.if ${PORT_OPTIONS:MX11} && ${ARCH} == "i386"
PLIST SUB+= X11I386=""

.else

PLIST SUB+= X11I386="@comment "

.endif

8.2. Empty Directories

8.2.1. Cleaning Up Empty Directories

When being de-installed, a port has to remove empty directories it created. Most of these
directories are removed automatically by pkg(8), but for directories created outside of ${PREFIX},
or empty directories, some more work needs to be done. This is usually accomplished by adding
@dir lines for those directories. Subdirectories must be deleted before deleting parent directories.

[...]
@dir /var/games/oneko/saved-games
@dir /var/games/oneko

8.2.2. Creating Empty Directories

Empty directories created during port installation need special attention. They must be present
when the package is created. If they are not created by the port code, create them in the Makefile:

post-install:
${MKDIR} ${STAGEDIR}${PREFIX}/some/directory

Add the directory to pkg-plist like any other. For example:

@dir some/directory

203

https://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html

8.3. Configuration Files

If the port installs configuration files to PREFIX/etc (or elsewhere) do not list them in pkg-plist. That
will cause pkg delete to remove files that have been carefully edited by the user, and a re-
installation will wipe them out.

Instead, install sample files with a filename.sample extension. The @sample macro automates this,
see @sample file [file] for what it does exactly. For each sample file, add a line to pkg-plist:

@sample etc/orbit.conf.sample

If there is a very good reason not to install a working configuration file by default, only list the
sample filename in pkg-plist, without the @sample followed by a space part, and add a message
pointing out that the user must copy and edit the file before the software will work.

When a port installs its configuration in a subdirectory of ${PREFIX}/etc, use

O ETCDIR, which defaults to ${PREFIX}/etc/${PORTNAME}, it can be overridden in the

- ports Makefile if there is a convention for the port to use some other directory. The
%%ETCDIR%% macro will be used in its stead in pkg-plist.

The sample configuration files should always have the .sample suffix. If for some
historical reason using the standard suffix is not possible, or if the sample files
come from some other directory, use this construct:

@sample etc/orbit.conf-dist etc/orbit.conf
or
@sample %%EXAMPLESDIR%%/orbit.conf etc/orbit.conf

The format is @sample sample-file actual-config-file.

8.4. Dynamic Versus Static Package List

A static package list is a package list which is available in the Ports Collection either as pkg-plist
(with or without variable substitution), or embedded into the Makefile via PLIST FILES and
PLIST_DIRS. Even if the contents are auto-generated by a tool or a target in the Makefile before the
inclusion into the Ports Collection by a committer (for example, using make makeplist), this is still
considered a static list, since it is possible to examine it without having to download or compile the
distfile.

A dynamic package list is a package list which is generated at the time the port is compiled based
upon the files and directories which are installed. It is not possible to examine it before the source
code of the ported application is downloaded and compiled, or after running a make clean.

204

../pkg-files/index.html#porting-message

While the use of dynamic package lists is not forbidden, maintainers should use static package lists
wherever possible, as it enables users to grep(1) through available ports to discover, for example,
which port installs a certain file. Dynamic lists should be primarily used for complex ports where
the package list changes drastically based upon optional features of the port (and thus maintaining
a static package list is infeasible), or ports which change the package list based upon the version of
dependent software used. For example, ports which generate docs with Javadoc.

8.5. Automated Package List Creation

First, make sure the port is almost complete, with only pkg-plist missing. Running make makeplist
will show an example for pkg-plist. The output of makeplist must be double checked for correctness
as it tries to automatically guess a few things, and can get it wrong.

User configuration files should be installed as filename.sample, as it is described in Configuration
Files. info/dir must not be listed and appropriate install-info lines must be added as noted in the
info files section. Any libraries installed by the port must be listed as specified in the shared
libraries section.

8.5.1. Expanding PLIST_SUB with Regular Expressions

Strings to be replaced sometimes need to be very specific to avoid undesired replacements. This is a
common problem with shorter values.

To address this problem, for each PLACEHOLDER=value, a PLACEHOLDER_regex=regex can be set, with the
regex part matching value more precisely.

205

https://www.freebsd.org/cgi/man.cgi?query=grep&sektion=1&format=html
../makefiles/index.html#makefile-info
../special/index.html#porting-shlibs
../special/index.html#porting-shlibs

{5 102. Using PLIST_SUB with Regular Expressions

Per]l ports can install architecture dependent files in a specific tree. On FreeBSD to ease
porting, this tree is called mach. For example, a port that installs a file whose path contains mach
could have that part of the path string replaced with the wrong values. Consider this Makefile:

PORTNAME= Machine-Build
DISTVERSION= 1
CATEGORIES= devel perl5
MASTER_SITES= CPAN
PKGNAMEPREFIX= p5-

MAINTAINER= perl@FreeBSD.org
COMMENT= Building machine

USES= perl5
USE_PERL5= configure

PLIST_SUB= PERL_ARCH=mach
The files installed by the port are:

/usr/local/bin/machine-build
/usr/local/lib/per15/site_perl/man/man1/machine-build.1.gz
/usr/local/lib/per15/site_perl/man/man3/Machine::Build.3.gz
/usr/local/lib/per15/site_perl/Machine/Build.pm
/usr/local/lib/per15/site_perl/mach/5.20/Machine/Build/Build.so

Running make makeplist wrongly generates:

:
%%PERL5_MAN1%%/%%PERL_ARCH%%ine-build.1.gz
%%PERL5_MAN3%%/Machine: :Build.3.gz
%%SITE_PERL%%/Machine/Build.pm
SITE_PERL%%/%%PERL_ARCH%%/%%PERL_VER%%/Machine/Build/Build.so

Change the PLIST_SUB line from the Makefile to:

PLIST _SUB= PERL_ARCH=mach \
PERL_ARCH_regex=\bmach\b

Now make makeplist correctly generates:

206

bin/machine-build

%%PERL5_MAN1%%/machine-build.1.gz

%%PERL5_MAN3%%/Machine: :Build.3.gz
%%SITE_PERL%%/Machine/Build.pm
%%SITE_PERL%%/%%PERL_ARCH%%/%%PERL_VER%%/Machine/Build/Build.so

8.6. Expanding Package List with Keywords

All keywords can also take optional arguments in parentheses. The arguments are owner, group,
and mode. This argument is used on the file or directory referenced. To change the owner, group,
and mode of a configuration file, use:

@sample(games,games,640) etc/config.sample
The arguments are optional. If only the group and mode need to be changed, use:

@sample(,games,660) etc/config.sample

If a keyword is used on an optional entry, it must to be added after the helper:

ﬁ %%F00%%@sample etc/orbit.conf.sample

This is because the options plist helpers are used to comment out the line, so they
need to be put first. See OPTIONS_SUB for more information.

8.6.1. @desktop-file-utils

Will run update-desktop-database -q after installation and deinstallation. Never use directly, add
USES=desktop-file-utils to the Makefile.

8.6.2. @fc directory

Add a @dir entry for the directory passed as an argument, and run fc-cache -fs on that directory
after installation and deinstallation.

8.6.3. @fcfontsdir directory

Add a edir entry for the directory passed as an argument, and run fc-cache -fs, mkfontscale and
mkfontdir on that directory after installation and deinstallation. Additionally, on deinstallation, it
removes the fonts.scale and fonts.dir cache files if they are empty. This keyword is equivalent to
adding both @fc directory and @fontsdir directory.

207

../makefiles/index.html#makefile-options
../makefiles/index.html#options_sub
../uses/index.html#uses-desktop-file-utils

8.6.4. @fontsdir directory

Add a @dir entry for the directory passed as an argument, and run mkfontscale and mkfontdir on
that directory after installation and deinstallation. Additionally, on deinstallation, it removes the
fonts.scale and fonts.dir cache files if they are empty.

8.6.5. @glib-schemas

Runs glib-compile-schemas on installation and deinstallation.

8.6.6. @info file

Add the file passed as argument to the plist, and updates the info document index on installation
and deinstallation. Additionally, it removes the index if empty on deinstallation. This should never
be used manually, but always through INFO. See Info Files for more information.

8.6.7. ek1d directory

Runs kldxref on the directory on installation and deinstallation. Additionally, on deinstallation, it
will remove the directory if empty.

8.6.8. @rmtry file

Will remove the file on deinstallation, and not give an error if the file is not there.

8.6.9. @sample file [file]

This is used to handle installation of configuration files, through example files bundled with the
package. The "actual”, non-sample, file is either the second filename, if present, or the first filename
without the .sample extension.

This does three things. First, add the first file passed as argument, the sample file, to the plist. Then,
on installation, if the actual file is not found, copy the sample file to the actual file. And finally, on
deinstallation, remove the actual file if it has not been modified. See Configuration Files for more
information.

8.6.10. @shared-mime-info directory

Runs update-mime-database on the directory on installation and deinstallation.

8.6.11. @shell file
Add the file passed as argument to the plist.

On installation, add the full path to file to /etc/shells, while making sure it is not added twice. On
deinstallation, remove it from /etc/shells.

208

../makefiles/index.html#makefile-info

8.6.12. @terminfo

Do not use by itself. If the port installs *terminfo files, add to its Makefile.

On installation and deinstallation, if tic is present, refresh ${PREFIX}/shared/misc/terminfo.db
from the *terminfo files in ${PREFIX}/shared/misc.

8.6.13. Base Keywords

There are a few keywords that are hardcoded, and documented in pkg-create(8). For the sake of
completeness, they are also documented here.

8.6.13.1. o [file]
The empty keyword is a placeholder to use when the file’s owner, group, or mode need to be

changed. For example, to set the group of the file to games and add the setgid bit, add:

@(,games,2755) sbin/daemon

8.6.13.2. @preexec command, @postexec command, @preunexec command, @postunexec command

Execute command as part of the package installation or deinstallation process.

@preexec command

Execute command as part of the pre-install scripts.

@postexec command

Execute command as part of the post-install scripts.

@preunexec command

Execute command as part of the pre-deinstall scripts.

@postunexec command

Execute command as part of the post-deinstall scripts.

If command contains any of these sequences somewhere in it, they are expanded inline. For these
examples, assume that @cwd is set to /usr/local and the last extracted file was bin/emacs.

%F

Expand to the last filename extracted (as specified). In the example case bin/emacs.

o°
o

Expand to the current directory prefix, as set with @cwd. In the example case /usr/local.

o
o

Expand to the basename of the fully qualified filename, that is, the current directory prefix plus
the last filespec, minus the trailing filename. In the example case, that would be /usr/local/bin.

209

https://www.freebsd.org/cgi/man.cgi?query=pkg-create&sektion=8&format=html

o
—

Expand to the filename part of the fully qualified name, or the converse of %B. In the example
case, emacs.

These keywords are here to help you set up the package so that it is as ready to use
o as possible. They must not be abused to start services, stop services, or run any
other commands that will modify the currently running system.

8.6.13.3. @mode mode

Set default permission for all subsequently extracted files to mode. Format is the same as that used
by chmod(1). Use without an arg to set back to default permissions (mode of the file while being
packed).

o This must be a numeric mode, like 644, 4755, or 600. It cannot be a relative mode
like u+s.
8.6.13.4. @owner user

Set default ownership for all subsequent files to user. Use without an argument to set back to
default ownership (root).

8.6.13.5. @group group

Set default group ownership for all subsequent files to group. Use without an arg to set back to
default group ownership (wheel).

8.6.13.6. @comment string

This line is ignored when packing.

8.6.13.7. @dir directory

Declare directory name. By default, directories created under PREFIX by a package installation are
automatically removed. Use this when an empty directory under PREFIX needs to be created, or
when the directory needs to have non default owner, group, or mode. Directories outside of PREFIX
need to be registered. For example, /var/db/${PORTNAME} needs to have a @dir entry whereas
${PREFIX}/shared/${PORTNAME} does not if it contains files or uses the default owner, group, and
mode.

8.6.13.8. @exec command, @unexec command (Deprecated)

Execute command as part of the installation or deinstallation process. Please use @preexec
command, @postexec command, @preunexec command, @postunexec command instead.

8.6.13.9. @dirrm directory (Deprecated)

Declare directory name to be deleted at deinstall time. By default, directories created under PREFIX
by a package installation are deleted when the package is deinstalled.

210

https://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1&format=html

8.6.13.10. edirrmtry directory (Deprecated)

Declare directory name to be removed, as for @dirrm, but does not issue a warning if the directory
cannot be removed.

8.6.14. Creating New Keywords

Package list files can be extended by keywords that are defined in the ${PORTSDIR}/Keywords
directory. The settings for each keyword are stored in a UCL file named keyword.ucl. The file must
contain at least one of these sections:

» attributes

* action

* pre-install

* post-install

* pre-deinstall

* post-deinstall

* pre-upgrade

* post-upgrade

8.6.14.1. attributes

Changes the owner, group, or mode used by the keyword. Contains an associative array where the
possible keys are owner, group, and mode. The values are, respectively, a user name, a group name,
and a file mode. For example:

attributes: { owner: "games", group: "games", mode: 0555 }

8.6.14.2. action

Defines what happens to the keyword’s parameter. Contains an array where the possible values
are:

setprefix

Set the prefix for the next plist entries.

dir

Register a directory to be created on install and removed on deinstall.

dirrm

Register a directory to be deleted on deinstall. Deprecated.

dirrmtry

Register a directory to try and deleted on deinstall. Deprecated.

211

file

Register a file.

setmode

Set the mode for the next plist entries.

setowner

Set the owner for the next plist entries.

setgroup

Set the group for the next plist entries.

comment

Does not do anything, equivalent to not entering an action section.

ignore_next

Ignore the next entry in the plist.

8.6.14.3. arguments

If set to true, adds argument handling, splitting the whole line, %@, into numbered arguments, %1, %2,
and so on. For example, for this line:

@foo some.content other.content

%1 and %2 will contain:

some.content
other.content

It also affects how the action entry works. When there is more than one argument, the argument
number must be specified. For example:

actions: [file(1)]

8.6.14.4. pre-install, post-install, pre-deinstall, post-deinstall, pre-upgrade, post-upgrade

These keywords contains a sh(1) script to be executed before or after installation, deinstallation, or
upgrade of the package. In addition to the usual eexec %foo placeholders described in @preexec
command, @postexec command, @preunexec command, @postunexec command, there is a new one, %@,
which represents the argument of the keyword.

8.6.14.5. Custom Keyword Examples

212

https://www.freebsd.org/cgi/man.cgi?query=sh&sektion=1&format=html

{5l 103. Example of a @dirrmtryecho Keyword

This keyword does two things, it adds a @dirrmtry directory line to the packing list, and echoes
the fact that the directory is removed when deinstalling the package.

actions: [dirrmtry]
post-deinstall: <<EQOD

echo "Directory %D/%@ removed."
EOD

213

{5 104. Real Life Example, How @sample is Implemented

This keyword does three things. It adds the first filename passed as an argument to @sample to
the packing list, it adds to the post-install script instructions to copy the sample to the actual
configuration file if it does not already exist, and it adds to the post-deinstall instructions to
remove the configuration file if it has not been modified.

214

actions: [file(1)]
arguments: true
post-install: <<EOD

case "%1" in

/*) sample_file="%1" ;;

*) sample_file="%D/%1" ;;

esac
target_file="${sample_file%.sample}"
set -- %0

if [$4 -eq 2]; then
target_file=${2}
fi
case "${target_file}" in
/*) target_file="${target_file}" ;;
*) target_file="%D/${target_file}" ;;
esac
if ' [-f "${target_file}"]; then
/bin/cp -p "${sample_file}" "${target_file}" && \
/bin/chmod u+w "${target_file}"
fi
EOD
pre-deinstall: <<EQOD
case "%1" in
/*) sample_file="%1" ;;
*) sample_file="%D/%1" ;;
esac
target_file="${sample_file%.sample}"
set -- %0
if [$4 -eq 2 1; then
set -- %0
target_file=${2}
fi
case "${target_file}" in
/*) target_file="${target_file}" ;;
*) target_file="%D/${target_file}" ;;
esac
if cmp -s "${target_file}" "${sample_file}"; then
rm -f "${target_file}"
else
echo "You may need to manually remove ${target_file} if it is no longer
needed."
fi
EOD

215

Chapter 9. pkg-*

There are some tricks we have not mentioned yet about the pkg-* files that come in handy
sometimes.

9.1. pkg-message

To display a message when the package is installed, place the message in pkg-message. This
capability is often useful to display additional installation steps to be taken after a pkg install or
pkg upgrade.

* pkg-message must contain only information that is vital to setup and operation
on FreeBSD, and that is unique to the port in question.

* Setup information should only be shown on initial install. Upgrade instructions
o should be shown only when upgrading from the relevant version.

* Do not surround the messages with either whitespace or lines of symbols (like
—————————— ,, Or ==========), Leave the formatting to pkg(8).

* Committers have blanket approval to constrain existing messages to install or
upgrade ranges using the UCL format specifications.

pkg-message supports two formats:

raw

A regular plain text file. Its message is only displayed on install.

UCL

If the file starts with “[” then it is considered to be a UCL file. The UCL format is described on
libucl’s GitHub page.

o Do not add an entry for pkg-message in pkg-plist.

9.1.1. UCL in pkg-message

The format is the following. It should be an array of objects. The objects themselves can have these
keywords:

message

The actual message to be displayed. This keyword is mandatory.

type
When the message should be displayed.

maximum_version

Only if type is upgrade. Display if upgrading from a version strictly lower than the version
specified.

216

https://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html
https://github.com/vstakhov/libucl

minimum_version

Only if type is upgrade. Display if upgrading from a version stictly greater than the version
specified.

The maximum_version and minimum_version keywords can be combined.
The type keyword can have three values:

install
The message should only be displayed when the package is installed.

remove

The message should only be displayed when the package is removed.

upgrade
the message should only be displayed during an upgrade of the package..

o To preserve the compatibility with non UCL pkg-message files, the first line of a
UCL pkg-message MUST be a single “[”, and the last line MUST be a single “]”.

{5l 105. UCL Short Strings

The message is delimited by double quotes ", this is used for simple single line strings:

[
{ type: install
message: "Simple message"

{5 106. UCL Multiline Strings

Multiline strings use the standard here document notation. The multiline delimiter must start
just after << symbols without any whitespace and it must consist of capital letters only. To
finish a multiline string, add the delimiter string on a line of its own without any whitespace.
The message from UCL Short Strings can be written as:

[

{ type: install
message: <<EOM

Simple message

EOM

}

]

217

{5l 107. Display a Message on Install/Deinstall

When a message only needs to be displayed on installation or uninstallation, set the type:

type: remove

message: "package being removed."
¥
{ type: install, message: "package being installed."}
]

{5 108. Display a Message on Upgrade

When a port is upgraded, the message displayed can be even more tailored to the port’s needs.

type: upgrade
message: "Package is being upgraded.”
}
{
type: upgrade
maximum_version: "1.0"
message: "Upgrading from before 1.0 need to do this."
}
{
type: upgrade
minimum_version: "1.0"
message: "Upgrading from after 1.0 should do that."
¥
{
type: upgrade
maximum_version: "3.0"
minimum_version: "1.0"
message: "Upgrading from > 1.0 and < 3.0 remove that file."

When displaying a message on upgrade, it is important to limit when it is being shown to
the user. Most of the time it is by using maximum_version to limit its usage to upgrades
from before a certain version when something specific needs to be done.

218

9.2. pkg-install

If the port needs to execute commands when the binary package is installed with pkg add or pkg
install, use pkg-install. This script will automatically be added to the package. It will be run twice
by pkg, the first time as ${SH} pkg-install ${PKGNAME} PRE-INSTALL before the package is installed,
and the second time as ${SH} pkg-install ${PKGNAME} POST-INSTALL after it has been installed. $2 can
be tested to determine which mode the script is being run in. The PKG_PREFIX environmental
variable will be set to the package installation directory.

This script is here to help you set up the package so that it is as ready to use as
o possible. It must not be abused to start services, stop services, or run any other
commands that will modify the currently running system.

9.3. pkg-deinstall

This script executes when a package is removed.

This script will be run twice by pkg delete. The first time as ${SH} pkg-deinstall ${PKGNAME}
DEINSTALL before the port is de-installed and the second time as ${SH} pkg-deinstall ${PKGNAME}
POST-DEINSTALL after the port has been de-installed. $2 can be tested to determine which mode the
script is being run in. The PKG_PREFIX environmental variable will be set to the package installation
directory

This script is here to help you set up the package so that it is as ready to use as
o possible. It must not be abused to start services, stop services, or run any other
commands that will modify the currently running system.

9.4. Changing the Names of pkg-*

All the names of pkg-* are defined using variables that can be changed in the Makefile if needed.
This is especially useful when sharing the same pkg-* files among several ports or when it is
necessary to write to one of these files. See writing to places other than WRKDIR for why it is a bad
idea to write directly into the directory containing the pkg-* files.

Here is a list of variable names and their default values. (PKGDIR defaults to ${MASTERDIR}.)

Variable Default value

DESCR ${PKGDIR}/pkg-descr
PLIST ${PKGDIR}/pkg-plist
PKGINSTALL ${PKGDIR}/pkg-install
PKGDEINSTALL ${PKGDIR}/pkg-deinstall
PKGMESSAGE ${PKGDIR}/pkg-message

219

../porting-dads/index.html#porting-wrkdir
../porting-dads/index.html#porting-wrkdir

9.5. Making Use of SUB_FILES and SUB_LIST

SUB_FILES and SUB_LIST are useful for dynamic values in port files, such as the installation PREFIX in
pkg-message.

SUB_FILES specifies a list of files to be automatically modified. Each file in the SUB_FILES list must
have a corresponding file.in present in FILESDIR. A modified version will be created as
${WRKDIR}/file. Files defined as a value of USE_RC_SUBR are automatically added to SUB_FILES. For
the files pkg-message, pkg-install, and pkg-deinstall, the corresponding Makefile variable is
automatically set to point to the processed version.

SUB_LIST is a list of VAR=VALUE pairs. For each pair, %%VAR%% will be replaced with VALUE in each file
listed in SUB_FILES. Several common pairs are automatically defined: PREFIX, LOCALBASE, DATADIR,
DOCSDIR, EXAMPLESDIR, WWWDIR, and ETCDIR. Any line beginning with @comment followed by a space, will
be deleted from resulting files after a variable substitution.

This example replaces %%ARCH%% with the system architecture in a pkg-message:

SUB_FILES= pkg-message
SUB_LIST= ARCH=${ARCH}

Note that for this example, pkg-message.in must exist in FILESDIR.

Example of a good pkg-message.in:

Now it is time to configure this package.
Copy %%PREFIX%%/shared/examples/putsy/%%ARCH%%.conf into your home directory
as .putsy.conf and edit it.

220

Chapter 10. Testing the Port

10.1. Running make describe

Several of the FreeBSD port maintenance tools, such as portupgrade(1), rely on a database called
/usr/ports/INDEX which keeps track of such items as port dependencies. INDEX is created by the
top-level ports/Makefile via make index, which descends into each port subdirectory and executes
make describe there. Thus, if make describe fails in any port, no one can generate INDEX, and many
people will quickly become unhappy.

It is important to be able to generate this file no matter what options are present in
o make.conf, so please avoid doing things such as using .error statements when (for
instance) a dependency is not satisfied. (See Avoid Use of the .error Construct.)

If make describe produces a string rather than an error message, everything is probably safe. See
bsd.port.mk for the meaning of the string produced.

Also note that running a recent version of portlint (as specified in the next section) will cause make
describe to be run automatically.

10.2. Portclippy / Portfmt

Those tools come from ports-mgmt/portfmt.

Portclippy is a linter that checks if variables in the Makefile are in the correct order according to
Order of Variables in Port Makefiles.

Portfmt is a tool for automatically formatting Makefile.

10.3. Portlint

Do check the port with portlint before submitting or committing it. portlint warns about many
common errors, both functional and stylistic. For a new (or repocopied) port, portlint -A is the
most thorough; for an existing port, portlint -Cis sufficient.

Since portlint uses heuristics to try to figure out errors, it can produce false positive warnings. In
addition, occasionally something that is flagged as a problem really cannot be done in any other
way due to limitations in the ports framework. When in doubt, the best thing to do is ask on
FreeBSD ports Z0:&IE.

10.4. Port Tools

The ports-mgmt/porttools program is part of the Ports Collection.

port is the front-end script, which can help simplify the testing job. Whenever a new port or an
update to an existing one needs testing, use port test to test the port, including the portlint
checking. This command also detects and lists any files that are not listed in pkg-plist. For example:

221

https://www.freebsd.org/cgi/man.cgi?query=portupgrade&sektion=1&format=html
../porting-dads/index.html#dads-dot-error
../porting-dads/index.html#dads-dot-error
../porting-dads/index.html#dads-dot-error
https://cgit.freebsd.org/ports/tree/ports-mgmt/portfmt/pkg-descr
../order/index.html#porting-order
../quick-porting/index.html#porting-portlint
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://cgit.freebsd.org/ports/tree/ports-mgmt/porttools/pkg-descr

port test /usr/ports/net/csup

10.5. PREFIX and DESTDIR

PREFIX determines where the port will be installed. It defaults to /usr/local, but can be set by the
user to a custom path like /opt. The port must respect the value of this variable.

DESTDIR, if set by the user, determines the complete alternative environment, usually a jail or an
installed system mounted somewhere other than /. A port will actually install into DESTDIR/PREFIX,
and register with the package database in DESTDIR/var/db/pkg. DESTDIR is handled automatically by
the ports infrastructure with chroot(8). There is no need for modifications or any extra care to write
DESTDIR-compliant ports.

The value of PREFIX will be set to LOCALBASE (defaulting to /usr/local). If USE_LINUX_PREFIX is set, PREFIX
will be LINUXBASE (defaulting to /compat/linux).

Avoiding hard-coded /usr/local paths in the source makes the port much more flexible and able to
cater to the needs of other sites. Often, this can be accomplished by replacing occurrences of
fusr/local in the port’s various Makefiles with ${PREFIX}. This variable is automatically passed down
to every stage of the build and install processes.

Make sure the application is not installing things in /usr/local instead of PREFIX. A quick test for such
hard-coded paths is:

% make clean; make package PREFIX=/var/tmp/‘make -V PORTNAME'

If anything is installed outside of PREFIX, the package creation process will complain that it cannot
find the files.

In addition, it is worth checking the same with the stage directory support (see Staging):
% make stage && make check-plist && make stage-qa && make package

» check-plist checks for files missing from the plist, and files in the plist that are not installed by
the port.

* stage-qa checks for common problems like bad shebang, symlinks pointing outside the stage
directory, setuid files, and non-stripped libraries...

These tests will not find hard-coded paths inside the port’s files, nor will it verify that LOCALBASE is
being used to correctly refer to files from other ports. The temporarily-installed port in
/var/tmp/make -V PORTNAME must be tested for proper operation to make sure there are no problems
with paths.

PREFIX must not be set explicitly in a port’s Makefile. Users installing the port may have set PREFIX to
a custom location, and the port must respect that setting.

222

https://www.freebsd.org/cgi/man.cgi?query=chroot&sektion=8&format=html
../special/index.html#staging

Refer to programs and files from other ports with the variables mentioned above, not explicit
pathnames. For instance, if the port requires a macro PAGER to have the full pathname of less, do
not use a literal path of /usr/local/bin/less. Instead, use ${LOCALBASE}:

-DPAGER=\"${LOCALBASE}/bin/1ess\"

The path with LOCALBASE is more likely to still work if the system administrator has moved the
whole /usr/local tree somewhere else.

All these tests are done automatically when running poudriere testport or
(r) poudriere bulk -t. It is highly recommended that every ports contributor install
et and test their ports with it. See Poudriere for more information.

10.6. Poudriere

For a ports contributor, Poudriere is one of the most important and helpful testing and build tools.
Its main features include:

Bulk building of the entire ports tree, specific subsets of the ports tree, or a single port including
its dependencies

* Automatic packaging of build results
* Generation of build log files per port
* Providing a signed pkg(8) repository

* Testing of port builds before submitting a patch to the FreeBSD bug tracker or committing to the
ports tree

* Testing for successful ports builds using different options

Because Poudriere performs its building in a clean jail(8) environment and uses zfs(8) features, it
has several advantages over traditional testing on the host system:

* No pollution of the host environment: No leftover files, no accidental removals, no changes of
existing configuration files.

* Verify pkg-plist for missing or superfluous entries

* Ports committers sometimes ask for a Poudriere log alongside a patch submission to assess

whether the patch is ready for integration into the ports tree

It is also quite straightforward to set up and use, has no dependencies, and will run on any
supported FreeBSD release. This section shows how to install, configure, and run Poudriere as part
of the normal workflow of a ports contributor.

The examples in this section show a default file layout, as standard in FreeBSD. Substitute any local
changes accordingly. The ports tree, represented by ${PORTSDIR}, is located in /usr/ports. Both
${LOCALBASE} and ${PREFIX} are /usr/local by default.

223

https://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=jail&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=zfs&sektion=8&format=html

10.6.1. Installing Poudriere

Poudriere is available in the ports tree in ports-mgmt/poudriere. It can be installed using pkg(8) or
from ports:

pkg install poudriere
or
make -C /usr/ports/ports-mgmt/poudriere install clean

There is also a work-in-progress version of Poudriere which will eventually become the next
release. It is available in ports-mgmt/poudriere-devel. This development version is used for the
official FreeBSD package builds, so it is well tested. It often has newer interesting features. A ports
committer will want to use the development version because it is what is used in production, and
has all the new features that will make sure everything is exactly right. A contributor will not
necessarily need those as the most important fixes are backported to released version. The main
reason for the use of the development version to build the official package is because it is faster, in
a way that will shorten a full build from 18 hours to 17 hours when using a high end 32 CPU server
with 128GB of RAM. Those optimizations will not matter a lot when building ports on a desktop
machine.

10.6.2. Setting Up Poudriere

The port installs a default configuration file, /usr/local/etc/poudriere.conf. Each parameter is
documented in the configuration file and in poudriere(8). Here is a minimal example config file:

ZP0O0L=tank

ZROOTFS=/poudriere

BASEFS=/poudriere
DISTFILES_CACHE=/usr/ports/distfiles
RESOLV_CONF=/etc/resolv.conf
FREEBSD_HOST=ftp://ftp.freebsd.org
SVN_HOST=svn.FreeBSD.org

ZP0O0L

The name of the ZFS storage pool which Poudriere shall use. Must be listed in the output of zpool
status.

ZROOTFS

The root of Poudriere-managed file systems. This entry will cause Poudriere to create zfs(8) file
systems under tank/poudriere.

BASEFS

The root mount point for Poudriere file systems. This entry will cause Poudriere to mount
tank/poudriere to /poudriere.

224

https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere-devel/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=poudriere&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=zfs&sektion=8&format=html

DISTFILES_CACHE

Defines where distfiles are stored. In this example, Poudriere and the host share the distfiles
storage directory. This avoids downloading tarballs which are already present on the system.
Please create this directory if it does not already exist so that Poudriere can find it.

RESOLV_CONF

Use the host /etc/resolv.conf inside jails for DNS. This is needed so jails can resolve the URLs of
distfiles when downloading. It is not needed when using a proxy. Refer to the default
configuration file for proxy configuration.

FREEBSD_HOST

The FTP/HTTP server to use when the jails are installed from FreeBSD releases and updated with
freebsd-update(8). Choose a server location which is close, for example if the machine is located
in Australia, use ftp.au.freebsd.org.

SVN_HOST

The server from where jails are installed and updated when using Subversion. Also used for
ports tree when not using portsnap(8). Again, choose a nearby location. A list of official
Subversion mirrors can be found in the FreeBSD Handbook Subversion section.

10.6.3. Creating Poudriere Jails

Create the base jails which Poudriere will use for building:
poudriere jail -c -j 114Ramd64 -v 11.4-RELEASE -a amd64

Fetch a 11.4-RELEASE for amd64 from the FTP server given by FREEBSD_HOST in poudriere.conf, create
the zfs file system tank/poudriere/jails/114Ramd64, mount it on /poudriere/jails/114Ramd64 and
extract the 11.4-RELEASE tarballs into this file system.

poudriere jail -c -j 111386 -v stable/11 -a 1386 -m git+https

Create tank/poudriere/jails/111386, mount it on /poudriere/jails/11i386, then check out the tip of
the Subversion branch of FreeBSD-11-STABLE from SVN_HOST in poudriere.conf into
/poudriere/jails/11i386/usr/src, then complete a buildworld and install it into /poudriere/jails/11i386.

If a specific Subversion revision is needed, append it to the version string. For
example:

Q

poudriere jail -c -j 111386 -v stable/11@123456 -a 1386 -m git+https

While it is possible to build a newer version of FreeBSD on an older version, most
o of the time it will not run. For example, if a stable/11 jail is needed, the host will
have to run stable/11 too. Running 11.4-RELEASE is not enough.

225

https://www.freebsd.org/cgi/man.cgi?query=freebsd-update&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=portsnap&sektion=8&format=html
https://docs.freebsd.org/en/books/handbook/#svn-mirrors

To create a Poudriere jail for 14.0-CURRENT:
poudriere jail -c -j 14amd64 -v main -a amd64 -m git+https

o In order to run a 14.0-CURRENT Poudriere jail you must be running 14.0-CURRENT. In
general, newer Kernels can build and run older jails. For instance, a 14.0-CURRENT
kernel can build and run a 11.4-STABLE. Poudriere jail if the COMPAT_FREEBSD11
kernel option was compiled in (on by default in 14.0-CURRENTGENERIC kernel
config).

The default svn protocol works but is not very secure. Using svn+https along with
o verifying the remote server’s SSL fingerprint is advised. It will ensure that the files
used for building the jail are from a trusted source.

A list of jails currently known to Poudriere can be shown with poudriere jail -1:

poudriere jail -1

JATLNAME VERSION ARCH METHOD
114Ramd64 11.4-RELEASE amde4 ftp
111386 11.4-STABLE 1386 svn+https

10.6.4. Keeping Poudriere Jails Updated

Managing updates is very straightforward. The command:
poudriere jail -u -j JAILNAME

updates the specified jail to the latest version available. For FreeBSD releases, update to the latest
patchlevel with freebsd-update(8). For FreeBSD versions built from source, update to the latest
Subversion revision in the branch.

For jails employing a git+* method, it 1is helpful to add -]
NumberOfParallelBuildJobs to speed up the build by increasing the number of
@ parallel compile jobs used. For example, if the building machine has 6 CPUs, use:

poudriere jail -u -J 6 -j JAILNAME

10.6.5. Setting Up Ports Trees for Use with Poudriere

There are multiple ways to use ports trees in Poudriere. The most straightforward way is to have
Poudriere create a default ports tree for itself, using either portsnap(8) (if running FreeBSD 12.1 or
11.4) or Git (if running FreeBSD-CURRENT):

226

https://www.freebsd.org/cgi/man.cgi?query=freebsd-update&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=portsnap&sektion=8&format=html

poudriere ports -c -m portsnap
or
poudriere ports -c -m git+https -B main

These commands create tank/poudriere/ports/default, mount it on /poudriere/ports/default, and
populate it using Git, portsnap(8), or Subversion. Afterward it is included in the list of known ports
trees:

poudriere ports -1
PORTSTREE METHOD TIMESTAMP PATH
default git+https 2020-07-20 04:23:56 /poudriere/ports/default

Note that the "default" ports tree is special. Each of the build commands explained
o later will implicitly use this ports tree unless specifically specified otherwise. To
use another tree, add -p treename to the commands.

While useful for regular bulk builds, having this default ports tree with the portsnap(8) method
may not be the best way to deal with local modifications for a ports contributor. As with the
creation of jails, it is possible to use a different method for creating the ports tree. To add an
additional ports tree for testing local modifications and ports development, checking out the tree
via Subversion (as described above) is preferable.

o The http and https methods need devel/subversion built with the SERF option
enabled. It is enabled by default.

The svn method allows extra qualifiers to tell Subversion exactly how to fetch data.
@ This is explained in poudriere(8). For instance, poudriere ports -c -m svn+ssh -p
et subversive uses SSH for the checkout.

10.6.6. Using Manually Managed Ports Trees with Poudriere

Depending on the workflow, it can be extremely helpful to use ports trees which are maintained
manually. For instance, if there is a local copy of the ports tree in /work/ports, point Poudriere to
the location:

» For Poudriere older than version 3.1.20:
poudriere ports -c -F -f none -M /work/ports -p development

e For Poudriere version 3.1.20 and later:

227

https://www.freebsd.org/cgi/man.cgi?query=portsnap&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=portsnap&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/devel/subversion/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=poudriere&sektion=8&format=html

poudriere ports -c -m null -M /work/ports -p development

This will be listed in the table of known trees:

poudriere ports -1
PORTSTREE ~ METHOD TIMESTAMP PATH
development null 2020-07-20 05:06:33 /work/ports

The dash or null in the METHOD column means that Poudriere will not update or

e change this ports tree, ever. It is completely up to the user to maintain this tree,
including all local modifications that may be used for testing new ports and
submitting patches.

10.6.7. Keeping Poudriere Ports Trees Updated

As straightforward as with jails described earlier:
poudriere ports -u -p PORTSTREE

Will update the given PORTSTREE, one tree given by the output of poudriere -1, to the latest
revision available on the official servers.

Ports trees without a method, see Using Manually Managed Ports Trees with
o Poudriere, cannot be updated like this. They must be updated manually by the
porter.

10.6.8. Testing Ports

After jails and ports trees have been set up, the result of a contributor’s modifications to the ports
tree can be tested.

For example, local modifications to the www/firefox port located in /work/ports/wwwy/firefox can
be tested in the previously created 11.4-RELEASE jail:

poudriere testport -j 114Ramdb64 -p development -o www/firefox

This will build all dependencies of Firefox. If a dependency has been built previously and is still up-
to-date, the pre-built package is installed. If a dependency has no up-to-date package, one will be
built with default options in a jail. Then Firefox itself is built.

The complete build of every port is logged to /poudriere/data/logs/bulk/114Ri386-
development/build-time/logs.

The directory name 114Ri386-development is derived from the arguments to -j and -p, respectively.

228

https://cgit.freebsd.org/ports/tree/www/firefox/pkg-descr

For convenience, a symbolic link /poudriere/data/logs/bulk/114Ri386-development/latest is also
maintained. The link points to the latest build-time directory. Also in this directory is an index.html
for observing the build process with a web browser.

By default, Poudriere cleans up the jails and leaves log files in the directories mentioned above. To
ease investigation, jails can be kept running after the build by adding -1 to testport:

poudriere testport -j 114Ramd64 -p development -i -o www/firefox

After the build completes, and regardless of whether it was successful, a shell is provided within
the jail. The shell is used to investigate further. Poudriere can be told to leave the jail running after
the build finishes with -I. Poudriere will show the command to run when the jail is no longer
needed. It is then possible to jexec(8) into it:

poudriere testport -j 114Ramd64 -p development -I -o www/firefox

[...]

====>> Installing local Pkg repository to /usr/local/etc/pkg/repos

====>> Leaving jail 114Ramd64-development-n running, mounted at
/poudriere/data/.m/114Ramd64-development/ref for interactive run testing
====>> To enter jail: jexec 114Ramd64-development-n env -i TERM=$TERM /usr/bin/login
-fp root

====>> To stop jail: poudriere jail -k -j 114Ramd64 -p development

jexec 114Ramd64-development-n env -i TERM=§TERM /usr/bin/login -fp root
[do some stuff in the jail]

exit

poudriere jail -k -j 114Ramd64 -p development

====>> Umounting file systems

An integral part of the FreeBSD ports build infrastructure is the ability to tweak ports to personal
preferences with options. These can be tested with Poudriere as well. Adding the -c:

poudriere testport -c -o www/firefox

Presents the port configuration dialog before the port is built. The ports given after -o in the format
category/portname will use the specified options, all dependencies will use the default options.
Testing dependent ports with non-default options can be accomplished using sets, see Using Sets.

When testing ports where pkg-plist is altered during build depending on the
@ selected options, it is recommended to perform a test run with all options selected
et and one with all options deselected.

10.6.9. Using Sets

For all actions involving builds, a so-called set can be specified using -z setname. A set refers to a
fully independent build. This allows, for instance, usage of testport with non-standard options for
the dependent ports.

229

https://www.freebsd.org/cgi/man.cgi?query=jexec&sektion=8&format=html

To use sets, Poudriere expects an existing directory structure similar to PORT_DBDIR, defaults to
/var/db/ports in its configuration directory. This directory is then nullfs(5)-mounted into the jails
where the ports and their dependencies are built. Usually a suitable starting point can be obtained
by recursively copying the existing PORT_DBDIR to /usr/local/etc/poudriere.d/jailname-portname-
setname-options. This is described in detail in poudriere(8). For instance, testing www/firefox in a
specific set named devset, add the -z devset parameter to the testport command:

poudriere testport -j 114Ramd64 -p development -z devset -o www/firefox

This will look for the existence of these directories in this order:

* /usr/local/etc/poudriere.d/114Ramd64-development-devset-options
* [usr/local/etc/poudriere.d/114Ramd64-devset-options
* /usr/local/etc/poudriere.d/114Ramd64-development-options
* /usr/local/etc/poudriere.d/devset-options
* /usr/local/etc/poudriere.d/development-options
* /usr/local/etc/poudriere.d/114Ramd64-options
* /usr/local/etc/poudriere.d/options
From this list, Poudriere nullfs(5)-mounts the first existing directory tree into the /var/db/ports

directory of the build jails. Hence, all custom options are used for all the ports during this run of
testport.

After the directory structure for a set is provided, the options for a particular port can be altered.
For example:

poudriere options -c www/firefox -z devset

The configuration dialog for wwwy/firefox is shown, and options can be edited. The selected options
are saved to the devset set.

Poudriere is very flexible in the option configuration. They can be set for
particular jails, ports trees, and for multiple ports by one command. Refer to
poudriere(8) for details.

10.6.10. Providing a Custom make.conf File

Similar to using sets, Poudriere will also use a custom make.conf if it is provided. No special
command line argument is necessary. Instead, Poudriere looks for existing files matching a name
scheme derived from the command line. For instance:

poudriere testport -j 114Ramdb64 -p development -z devset -o www/firefox

230

https://www.freebsd.org/cgi/man.cgi?query=nullfs&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=poudriere&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/www/firefox/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=nullfs&sektion=5&format=html
https://cgit.freebsd.org/ports/tree/www/firefox/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=poudriere&sektion=8&format=html

causes Poudriere to check for the existence of these files in this order:

* /usr/local/etc/poudriere.d/make.conf

* /usr/local/etc/poudriere.d/devset-make.conf

* /usr/local/etc/poudriere.d/development-make.conf

* /usr/local/etc/poudriere.d/114Ramd64-make.conf

* /usr/local/etc/poudriere.d/114Ramd64-development-make.conf

* /usr/local/etc/poudriere.d/114Ramd64-devset-make.conf

* /usr/local/etc/poudriere.d/114Ramd64-development-devset-make.conf
Unlike with sets, all of the found files will be appended, in that order, into one make.conf inside the
build jails. It is hence possible to have general make variables, intended to affect all builds in
/usr/local/etc/poudriere.d/make.conf. Special variables, intended to affect only certain jails or sets

can be set in specialised make.conf files, such as /usr/local/etc/poudriere.d/114Ramd64-
development-devset-make.conf.

{5l 109. Using make.conf to Change Default Perl

To build a set with a non default Perl version, for example, 5.20, using a set named per15-20,
create a perl5-20-make.conf with this line:

DEFAULT_VERSIONS+= perl1=5.20

Note the use of += so that if the variable is already set in the default make.conf its content
will not be overwritten.

10.6.11. Pruning no Longer Needed Distfiles

Poudriere comes with a built-in mechanism to remove outdated distfiles that are no longer used by
any port of a given tree. The command

poudriere distclean -p portstree

will scan the distfiles folder, DISTFILES_CACHE in poudriere.conf, versus the ports tree given by the -p
portstree argument and prompt for removal of those distfiles. To skip the prompt and remove all
unused files unconditionally, the -y argument can be added:

poudriere distclean -p portstree -y

231

Chapter 11. Upgrading a Port

When a port is not the most recent version available from the authors, update the local working
copy of /usr/ports. The port might have already been updated to the new version.

When working with more than a few ports, it will probably be easier to use Git to keep the whole
ports collection up-to-date, as described in the Handbook. This will have the added benefit of
tracking all the port’s dependencies.

The next step is to see if there is an update already pending. To do this, there are two options. There
is a searchable interface to the FreeBSD Problem Report (PR) or bug database. Select Ports &
Packages in the Product multiple select menu, and enter the name of the port in the Summary field.

However, sometimes people forget to put the name of the port into the Summary field in an
unambiguous fashion. In that case, try searching in the Comment field in the Detailled Bug
Information section, or try the FreeBSD Ports Monitoring System (also known as portsmon). This
system attempts to classify port PRs by portname. To search for PRs about a particular port, use the
Overview of One Port.

o The FreeBSD Ports Monitoring System (portsmon) is currently not working due to
latest Python updates.

If there is no pending PR, the next step is to send an email to the port’s maintainer, as shown by
make maintainer. That person may already be working on an upgrade, or have a reason to not
upgrade the port right now (because of, for example, stability problems of the new version), and
there is no need to duplicate their work. Note that unmaintained ports are listed with a maintainer
of ports@FreeBSD.org, which is just the general ports mailing list, so sending mail there probably will
not help in this case.

If the maintainer asks you to do the upgrade or there is no maintainer, then help out FreeBSD by
preparing the update! Please do this by using the diff(1) command in the base system.

To create a suitable diff for a single patch, copy the file that needs patching to something.orig, save
the changes to something and then create the patch:

% diff -u something.orig something > something.diff

Otherwise, either use the git diff method (Using Git to Make Patches) or copy the contents of the
port to an entire different directory and use the result of the recursive diff(1) output of the new and
old ports directories (for example, if the modified port directory is called superedit and the original
is in our tree as superedit.bak, then save the result of diff -ruN superedit.bak superedit). Either
unified or context diff is fine, but port committers generally prefer unified diffs. Note the use of the
-N option-this is the accepted way to force diff to properly deal with the case of new files being
added or old files being deleted. Before sending us the diff, please examine the output to make sure
all the changes make sense. (In particular, make sure to first clean out the work directories with
make clean).

232

https://docs.freebsd.org/en/books/handbook/#ports-using
https://bugs.freebsd.org/search/
../keeping-up/index.html#portsmon
http://portsmon.FreeBSD.org/portoverview.py
https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html

If some files have been added, copied, moved, or removed, add this information to
the problem report so that the committer picking up the patch will know what
git(1) commands to run.

To simplify common operations with patch files, use make makepatch as described in Patching. Other
tools exists, like /usr/ports/Tools/scripts/patchtool.py. Before using it, please read
/usr/ports/Tools/scripts/README.patchtool.

If the port is unmaintained, and you are actively using it, please consider volunteering to become
its maintainer. FreeBSD has over 4000 ports without maintainers, and this is an area where more
volunteers are always needed. (For a detailed description of the responsibilities of maintainers,
refer to the section in the Developer’s Handbook.)

To submit the diff, use the bug submit form (product Ports & Packages, component Individual
Port(s)). Always include the category with the port name, followed by colon, and brief descripton
of the issue. Examples: category/portname: add FO0 option; category/portname: Update to X.Y.
Please mention any added or deleted files in the message, as they have to be explicitly specified to
git(1) when doing a commit. Do not compress or encode the diff.

Before submitting the bug, review the Writing the problem report section in the Problem Reports
article. It contains far more information about how to write useful problem reports.

If the upgrade is motivated by security concerns or a serious fault in the currently
committed port, please notify the Ports Management Team <

o portmgr@FreeBSD.org> to request immediate rebuilding and redistribution of the
port’s package. Unsuspecting users of pkg will otherwise continue to install the old
version via pkg install for several weeks.

Please use diff(1) or git diff to create updates to existing ports. Other formats
o include the whole file and make it impossible to see just what has changed. When
diffs are not included, the entire update might be ignored.

Now that all of that is done, read about how to keep up-to-date in Keeping Up.

11.1. Using Git to Make Patches

When possible, please submit a git(1) patch or diff. They are easier to handle than diffs between
"new and old" directories. It is easier to see what has changed, and to update the diff if something
was modified in the Ports Collection since the work on it began, or if the committer asks for
something to be fixed. Also, a patch generated with git-format-patch(1) or git-diff(1) can be easily
applied with git-am(1) or git-apply(1) and will save some time for the committer. Finally, the git
patch generated by git-format-patch(1) includes your author information and commit messages.
These will be recorded in the log of the repository and this is the recommended way to submit your
changes.

233

https://www.freebsd.org/cgi/man.cgi?query=git&sektion=1&format=html
../slow-porting/index.html#slow-patch
https://docs.freebsd.org/en/books/developers-handbook/#POLICIES-MAINTAINER
https://bugs.freebsd.org/submit/
https://www.freebsd.org/cgi/man.cgi?query=git&sektion=1&format=html
https://docs.freebsd.org/zh-tw/articles/problem-reports/#pr-writing
mailto:portmgr@FreeBSD.org
https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
../keeping-up/index.html#keeping-up
https://www.freebsd.org/cgi/man.cgi?query=git&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=git-format-patch&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=git-diff&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=git-am&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=git-apply&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=git-format-patch&sektion=1&format=html

% git clone https://git.FreeBSD.org/ports.git ~/my_wrkdir @ @
cd ~/my_wrkdir

9
%

@ This can be anywhere, of course. Building ports is not limited to within /usr/ports/.
@ git.FreeBSD.org is the FreeBSD public Git server. See FreeBSD Git Repository URL Table for more

information.

While in the port directory, make any changes that are needed. If adding, moving, or removing a
file, use git to track these changes:

)
°

git add new_file
% git mv old_name new_name
git rm deleted_file

%
Make sure to check the port using the checklist in Testing the Port and Checking the Port with
portlint.

Before making the patch, fetch the latest repository and rebase the changes on top of it. Watch and
follow the output carefully. If any of the files failed to rebase, it means that the upstream files
changed while you were editing the same file, and the conflicts need to be resolved manually.

it fetch origin main
it rebase origin/main

Check the changes staged for the patch:

)
°

git status
% git diff --staged

The last step is to make an unified diff or patch of the changes:

To generate an unified diff with git-diff(1):
% git diff --staged > ../'make -VPKGNAME'.diff

This will generate a diff named like foo-1.2.3.diff. Where foo is replaced with the first line of the
commit message, i.e., the subject of the commit message.

To generate a patch with git-format-patch(1):

o

git checkout -b my_branch
git commit
git format-patch main

o

o

234

https://git.FreeBSD.org/
https://docs.freebsd.org/en/books/handbook/mirrors#git-url-table
../quick-porting/index.html#porting-testing
../quick-porting/index.html#porting-portlint
../quick-porting/index.html#porting-portlint
https://www.freebsd.org/cgi/man.cgi?query=git-diff&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=git-format-patch&sektion=1&format=html

This will generate a patch named like 0001-foo.patch.

After patch has been created, you can switch to the main branch for starting other developments.
% git checkout main
Once the patch is accepted and merged, you can delete the local development branch if you want:

% git branch -D my_branch

If files have been added, moved, or removed, include the git(1) add, mv, and rm
o commands that were used. git mv must be run before the patch can be applied. git
add or git rm must be run after the patch is applied.

Send the patch following the problem report submission guidelines.

11.2. UPDATING and MOVED

11.2.1. /usr/ports/UPDATING

If upgrading the port requires special steps like changing configuration files or running a specific
program, it must be documented in this file. The format of an entry in this file is:

YYYYMMDD:
AFFECTS: users of portcategory/portname
AUTHOR: Your name <Your email address>

Special instructions

When including exact portmaster, portupgrade, and/or pkg instructions, please
make sure to get the shell escaping right. For example, do not use:

pkg delete -g -f docbook-xml* docbook-sk* docbook[2345]?7-* docbook-
4*

As shown, the command will only work with bourne shells. Instead, use the form
shown below, which will work with both bourne shell and c-shell:

pkg delete -g -f docbook-xml* docbook-sk* docbook\[2345\]\7\7-*
docbook-4*

235

https://www.freebsd.org/cgi/man.cgi?query=git&sektion=1&format=html
https://docs.freebsd.org/zh-tw/articles/problem-reports/#pr-writing

It is recommended that the AFFECTS line contains a glob matching all the ports

o affected by the entry so that automated tools can parse it as easily as possible. If an
update concerns all the existing BIND 9 versions the AFFECTS content must be users
of dns/bind9*, it must not be users of BIND 9

11.2.2. /usr/ports/MOVED

This file is used to list moved or removed ports. Each line in the file is made up of the name of the
port, where the port was moved, when, and why. If the port was removed, the section detailing
where it was moved can be left blank. Each section must be separated by the | (pipe) character, like
so:

old name|new name (blank for deleted)|date of move|reason

The date must be entered in the form YYYY-MM-DD. New entries are added to the end of the list to
keep it in chronological order, with the oldest entry at the top of the list.

If a port was removed but has since been restored, delete the line in this file that states that it was
removed.

If a port was renamed and then renamed back to its original name, add a new one with the
intermediate name to the old name, and remove the old entry as to not create a loop.

Any changes must be validated with Tools/scripts/MOVEDLint.awk.

If using a ports directory other than /usr/ports, use:

% cd /home/user/ports
% env PORTSDIR=$PWD Tools/scripts/MOVED1lint.awk

236

Chapter 12. Security

12.1. Why Security is So Important

Bugs are occasionally introduced to the software. Arguably, the most dangerous of them are those
opening security vulnerabilities. From the technical viewpoint, such vulnerabilities are to be closed
by exterminating the bugs that caused them. However, the policies for handling mere bugs and
security vulnerabilities are very different.

A typical small bug affects only those users who have enabled some combination of options
triggering the bug. The developer will eventually release a patch followed by a new version of the
software, free of the bug, but the majority of users will not take the trouble of upgrading
immediately because the bug has never vexed them. A critical bug that may cause data loss
represents a graver issue. Nevertheless, prudent users know that a lot of possible accidents, besides
software bugs, are likely to lead to data loss, and so they make backups of important data; in
addition, a critical bug will be discovered really soon.

A security vulnerability is all different. First, it may remain unnoticed for years because often it
does not cause software malfunction. Second, a malicious party can use it to gain unauthorized
access to a vulnerable system, to destroy or alter sensitive data; and in the worst case the user will
not even notice the harm caused. Third, exposing a vulnerable system often assists attackers to
break into other systems that could not be compromised otherwise. Therefore closing a
vulnerability alone is not enough: notify the audience of it in the most clear and comprehensive
manner, which will allow them to evaluate the danger and take appropriate action.

12.2. Fixing Security Vulnerabilities

While on the subject of ports and packages, a security vulnerability may initially appear in the
original distribution or in the port files. In the former case, the original software developer is likely
to release a patch or a new version instantly. Update the port promptly with respect to the author’s
fix. If the fix is delayed for some reason, either mark the port as FORBIDDEN or introduce a patch file
to the port. In the case of a vulnerable port, just fix the port as soon as possible. In either case,
follow the standard procedure for submitting changes unless having rights to commit it directly to
the ports tree.

o Being a ports committer is not enough to commit to an arbitrary port. Remember
that ports usually have maintainers, must be respected.

Please make sure that the port’s revision is bumped as soon as the vulnerability has been closed.
That is how the users who upgrade installed packages on a regular basis will see they need to run
an update. Besides, a new package will be built and distributed over FTP and WWW mirrors,
replacing the vulnerable one. Bump PORTREVISION unless DISTVERSION has changed in the course of
correcting the vulnerability. That is, bump PORTREVISION if adding a patch file to the port, but do not
bump it if updating the port to the latest software version and thus already touched DISTVERSION.
Please refer to the corresponding section for more information.

237

../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall
../port-upgrading/index.html#port-upgrading
../makefiles/index.html#makefile-naming-revepoch

12.3. Keeping the Community Informed

12.3.1. The VuXML Database

A very important and urgent step to take as early after a security vulnerability is discovered as
possible is to notify the community of port users about the jeopardy. Such notification serves two
purposes. First, if the danger is really severe it will be wise to apply an instant workaround. For
example, stop the affected network service or even deinstall the port completely until the
vulnerability is closed. Second, a lot of users tend to upgrade installed packages only occasionally.
They will know from the notification that they must update the package without delay as soon as a
corrected version is available.

Given the huge number of ports in the tree, a security advisory cannot be issued on each incident
without creating a flood and losing the attention of the audience when it comes to really serious
matters. Therefore security vulnerabilities found in ports are recorded in the FreeBSD VuXML
database. The Security Officer Team members also monitor it for issues requiring their
intervention.

Committers can update the VuXML database themselves, assisting the Security Officer Team and
delivering crucial information to the community more quickly. Those who are not committers or
have discovered an exceptionally severe vulnerability should not hesitate to contact the Security
Officer Team directly, as described on the FreeBSD Security Information page.

The VuXML database is an XML document. Its source file vuln.xml is kept right inside the port
security/vuxml. Therefore the file’s full pathname will be PORTSDIR/security/vuxml/vuln.xml. Each
time a security vulnerability is discovered in a port, please add an entry for it to that file. Until
familiar with VuXML, the best thing to do is to find an existing entry fitting the case at hand, then
copy it and use it as a template.

12.3.2. A Short Introduction to VuXML

The full-blown XML format is complex, and far beyond the scope of this book. However, to gain
basic insight on the structure of a VuXML entry only the notion of tags is needed. XML tag names
are enclosed in angle brackets. Each opening <tag> must have a matching closing </tag>. Tags may
be nested. If nesting, the inner tags must be closed before the outer ones. There is a hierarchy of
tags, that is, more complex rules of nesting them. This is similar to HTML. The major difference is
that XML is eXtensible, that is, based on defining custom tags. Due to its intrinsic structure XML
puts otherwise amorphous data into shape. VuXML is particularly tailored to mark up descriptions
of security vulnerabilities.

Now consider a realistic VuXML entry:

238

https://vuxml.freebsd.org/
https://vuxml.freebsd.org/
https://www.freebsd.org/security/#how
https://cgit.freebsd.org/ports/tree/security/vuxml/pkg-descr

<vuln vid="f4bc80f4-dab2-11d8-90ea-0004ac98a7b9"> @
<topic>Several vulnerabilities found in Foo</topic> @
<affects>
<package>
<name>foo</name> @
<name>foo-devel</name>
<name>ja-foo</name>
<range><ge>1.6</ge><1t>1.9</1t></range> @
<range><ge>2.*</ge><1t>2.4_1</1t></range>
<range><eq>3.0b1</eq></range>
</package>
<package>
<name>openfoo</name> ®
<range><1t>1.10_7</1t></range> ®
<range><ge>1.2,1</ge><1t>1.3_1,1</1t></range>
</package>
</affects>
<description>
<body xmlns="http://www.w3.0rg/1999/xhtm1">
<p>J]. Random Hacker reports:</p> @
<blockquote
cite="http://j.r.hacker.com/advisories/1">
<p>Several issues in the Foo software may be exploited
via carefully crafted QUUX requests. These requests will
permit the injection of Bar code, mumble theft, and the
readability of the Foo administrator account.</p>
</blockquote>
</body>
</description>
<references>
<freebsdsa>SA-10:75.foo</freebsdsa> @
<freebsdpr>ports/987654</freebsdpr> @
<cvename>CAN-2010-0201</cvename> @
<cvename>CAN-2010-0466</cvename>
<bid>96298</bid> @
<certsa>CA-2010-99</certsa> ®
<certvu>740169</certvu>
<uscertsa>SA10-99A</uscertsa> @®
<uscertta>SA10-99A</uscertta>
<mlist
msgid="201075606@hacker.com">http://marc.theaimsgroup.com/?1=bugtrag&m=20388660782
5605</mlist> @
<url>http://j.r.hacker.com/advisories/1</url> @®
</references>
<dates>
<discovery>2010-05-25</discovery> @
<entry>2010-07-13</entry> @
<modified>2010-09-17</modified>
</dates>
</vuln>

239

The tag names are supposed to be self-explanatory so we shall take a closer look only at fields
which needs to be filled in:

@ This is the top-level tag of a VuXML entry. It has a mandatory attribute, vid, specifying a
universally unique identifier (UUID) for this entry (in quotes). Generate a UUID for each new
VuXML entry (and do not forget to substitute it for the template UUID unless writing the entry
from scratch). Use uuidgen(1) to generate a VuXML UUID.

@ This is a one-line description of the issue found.

® The names of packages affected are listed there. Multiple names can be given since several
packages may be based on a single master port or software product. This may include stable and
development branches, localized versions, and slave ports featuring different choices of
important build-time configuration options.

@ Affected versions of the package(s) are specified there as one or more ranges using a
combination of <1t>, <le>, <eg>, <ge>, and <gt> elements. Check that the version ranges given do
not overlap.

In a range specification, * (asterisk) denotes the smallest version number. In particular, 2.* is
less than 2.a. Therefore an asterisk may be used for a range to match all possible alpha, beta, and
RC versions. For instance, <ge>2.</ge><1t>3.</1t> will selectively match every 2.x version while
<ge>2.0</ge><1t>3.0</1t> will not since the latter misses 2.r3 and matches 3.b.

The above example specifies that affected are versions 1.6 and up to but not including 1.9,
versions 2.x before 2.4_1, and version 3.0b1.

® Several related package groups (essentially, ports) can be listed in the <affected> section. This
can be used if several software products (say FooBar, FreeBar and OpenBar) grow from the
same code base and still share its bugs and vulnerabilities. Note the difference from listing
multiple names within a single <package> section.

® The version ranges have to allow for PORTEPOCH and PORTREVISION if applicable. Please remember
that according to the collation rules, a version with a non-zero PORTEPOCH is greater than any
version without PORTEPOCH, for example, 3.0, 1 is greater than 3.1 or even than 8.9.

@ This is a summary of the issue. XHTML is used in this field. At least enclosing <p> and </p> has to
appear. More complex mark-up may be used, but only for the sake of accuracy and clarity: No
eye candy please.

® This section contains references to relevant documents. As many references as apply are
encouraged.

© This is a FreeBSD security advisory.

This is a FreeBSD problem report.

@ This is a MITRE CVE identifier.

@ This is a SecurityFocus Bug ID.

@ This is a US-CERT security advisory.

This is a US-CERT vulnerability note.

@® This is a US-CERT Cyber Security Alert.

This is a US-CERT Technical Cyber Security Alert.

@ This is a URL to an archived posting in a mailing list. The attribute msgid is optional and may

240

https://www.freebsd.org/cgi/man.cgi?query=uuidgen&sektion=1&format=html
https://www.freebsd.org/security/#adv
https://www.freebsd.org/support/
http://www.cve.mitre.org/
http://www.securityfocus.com/bid
http://www.cert.org/
http://www.cert.org/
http://www.cert.org/
http://www.cert.org/

specify the message ID of the posting.
This is a generic URL. Only it if none of the other reference categories apply.
This is the date when the issue was disclosed (YYYY-MM-DD).
@ This is the date when the entry was added (YYYY-MM-DD).

This is the date when any information in the entry was last modified (YYYY-MM-DD). New entries
must not include this field. Add it when editing an existing entry.

12.3.3. Testing Changes to the VuXML Database

This example describes a new entry for a vulnerability in the package dropbear that has been fixed
in version dropbear-2013.59.

As a prerequisite, install a fresh version of security/vuxml port.

First, check whether there already is an entry for this vulnerability. If there were such an entry, it
would match the previous version of the package, 2013.58:

% pkg audit dropbear-2013.58
If there is none found, add a new entry for this vulnerability.

% cd ${PORTSDIR}/security/vuxml
% make newentry

Verify its syntax and formatting:
% make validate
The previous command generates the vuln-flat.xml file. It can also be generated with:

% make vuln-flat.xml

o At least one of these packages needs to be installed: textproc/libxml2,
textproc/jade.

Verify that the <affected> section of the entry will match the correct packages:
% pkg audit -f ${PORTSDIR}/security/vuxml/vuln-flat.xml dropbear-2013.58

Make sure that the entry produces no spurious matches in the output.

Now check whether the right package versions are matched by the entry:

241

https://cgit.freebsd.org/ports/tree/security/vuxml/pkg-descr
https://cgit.freebsd.org/ports/tree/textproc/libxml2/pkg-descr
https://cgit.freebsd.org/ports/tree/textproc/jade/pkg-descr

% pkg audit -f ${PORTSDIR}/security/vuxml/vuln-flat.xml dropbear-2013.58 dropbear-
2013.59

dropbear-2012.58 1is vulnerable:

dropbear -- exposure of sensitive information, DoS

CVE: CVE-2013-4434

CVE: CVE-2013-4421

WWW: http://portaudit.FreeBSD.org/8c9b48d1-3715-11e3-3624-00262d8b701d.html

1 problem(s) in the installed packages found.

The former version matches while the latter one does not.

242

Chapter 13. Dos and Don’ts

13.1. Introduction

Here is a list of common dos and don’ts that are encountered during the porting process. Check the
port against this list, but also check ports in the PR database that others have submitted. Submit any
comments on ports as described in Bug Reports and General Commentary. Checking ports in the PR
database will both make it faster for us to commit them, and prove that you know what you are
doing.

13.2. WRKDIR

Do not write anything to files outside WRKDIR. WRKDIR is the only place that is guaranteed to be
writable during the port build (see installing ports from a CDROM for an example of building ports
from a read-only tree). The pkg-* files can be modified by redefining a variable rather than
overwriting the file.

13.3. WRKDIRPREFIX

Make sure the port honors WRKDIRPREFIX. Most ports do not have to worry about this. In particular,
when referring to a WRKDIR of another port, note that the correct location is
${WRKDIRPREFIX}${PORTSDIR}/subdir/name/work not ${PORTSDIR}/subdir/name/work or
${.CURDIR}/../../subdir/name/work or some such.

13.4. Differentiating Operating Systems and OS
Versions

Some code needs modifications or conditional compilation based upon what version of FreeBSD
Unix it is running under. The preferred way to tell FreeBSD versions apart are the
__FreeBSD_version and __FreeBSD__ macros defined in sys/param.h. If this file is not included add the
code,

#include <sys/param.h>

to the proper place in the .c file.

__FreeBSD__ is defined in all versions of FreeBSD as their major version number. For example, in
FreeBSD 9.x, __FreeBSD__ is defined to be 9.

#if __FreeBSD__ >= 0
if __FreeBSD version >= 901000
/* 9.1+ release specific code here */
endif
#endif

243

https://bugs.FreeBSD.org/search/
https://docs.freebsd.org/zh-tw/articles/contributing/#CONTRIB-GENERAL
https://docs.freebsd.org/en/books/handbook/#PORTS-CD
../pkg-files/index.html#pkg-names
https://cgit.freebsd.org/src/tree/sys/sys/param.h

A complete list of __FreeBSD_version values is available in _ FreeBSD_version Values.

13.5. Writing Something After bsd.port.mk

Do not write anything after the .include <bsd.port.mk> line. It usually can be avoided by including
bsd.port.pre.mk somewhere in the middle of the Makefile and bsd.port.post.mk at the end.

o Include either the bsd.port.pre.mk/bsd.port.post.mk pair or bsd.port.mk only; do
not mix these two usages.

bsd.port.pre.mk only defines a few variables, which can be used in tests in the Makefile,
bsd.port.post.mk defines the rest.

Here are some important variables defined in bsd.port.pre.mk (this is not the complete list, please
read bsd.port.mk for the complete list).

Variable Description

ARCH The architecture as returned by uname -m (for
example, 1386)

OPSYS The operating system type, as returned by uname
-s (for example, FreeBSD)

OSREL The release version of the operating system (for
example, 2.1.50r 2.2.7)

OSVERSION The numeric version of the operating system;
the same as __FreeBSD_version.

LOCALBASE The base of the "local" tree (for example,
/usr/local)

PREFIX Where the port installs itself (see more on
PREFIX).

0 When MASTERDIR is needed, always define it before including bsd.port.pre.mKk.

Here are some examples of things that can be added after bsd.port.pre.mk:

no need to compile lang/perl5 if perl5 is already in system
.if ${OSVERSION} > 300003

BROKEN= perl 1is in system

.endif

Always use tab instead of spaces after BROKEN=.

244

../versions/index.html#versions
../versions/index.html#versions
../testing/index.html#porting-prefix
../testing/index.html#porting-prefix

13.6. Use the exec Statement in Wrapper Scripts

If the port installs a shell script whose purpose is to launch another program, and if launching that
program is the last action performed by the script, make sure to launch the program using the exec
statement, for instance:

#!/bin/sh
exec %%LOCALBASE%%/bin/java -jar %%DATADIR%%/foo.jar "$@"

The exec statement replaces the shell process with the specified program. If exec is omitted, the
shell process remains in memory while the program is executing, and needlessly consumes system
resources.

13.7. Do Things Rationally

The Makefile should do things in a simple and reasonable manner. Making it a couple of lines
shorter or more readable is always better. Examples include using a make . if construct instead of a
shell if construct, not redefining do-extract if redefining EXTRACT* is enough, and using
GNU_CONFIGURE instead of CONFIGURE_ARGS += --prefix=${PREFIX}.

If a lot of new code is needed to do something, there may already be an implementation of it in
bsd.port.mk. While hard to read, there are a great many seemingly-hard problems for which
bsd.port.mk already provides a shorthand solution.

13.8. Respect Both CC and CXX

The port must respect both CC and CXX. What we mean by this is that the port must not set the values
of these variables absolutely, overriding existing values; instead, it may append whatever values it
needs to the existing values. This is so that build options that affect all ports can be set globally.

If the port does not respect these variables, please add NO_PACKAGE=ignores either cc or cxx to the
Makefile.

Here is an example of a Makefile respecting both CC and CXX. Note the ?=:

CC?= gcc

CXX?= g++
Here is an example which respects neither CC nor CXX:

CC= gcc

245

CXX= g++

Both CC and (XX can be defined on FreeBSD systems in /etc/make.conf. The first example defines a
value if it was not previously set in /etc/make.conf, preserving any system-wide definitions. The
second example clobbers anything previously defined.

13.9. Respect CFLAGS

The port must respect CFLAGS. What we mean by this is that the port must not set the value of this
variable absolutely, overriding the existing value. Instead, it may append whatever values it needs
to the existing value. This is so that build options that affect all ports can be set globally.

If it does not, please add NO_PACKAGE=1ignores cflags to the Makefile.

Here is an example of a Makefile respecting CFLAGS. Note the +=:
CFLAGS+= -Wall -Werror

Here is an example which does not respect CFLAGS:
CFLAGS= -Wall -Werror

CFLAGS is defined on FreeBSD systems in /etc/make.conf. The first example appends additional flags
to CFLAGS, preserving any system-wide definitions. The second example clobbers anything
previously defined.

Remove optimization flags from the third party Makefiles. The system CFLAGS contains system-wide
optimization flags. An example from an unmodified Makefile:

CFLAGS= -03 -funroll-loops -DHAVE_SOUND
Using system optimization flags, the Makefile would look similar to this example:

CFLAGS+= -DHAVE_SOUND

13.10. Verbose Build Logs

Make the port build system display all commands executed during the build stage. Complete build
logs are crucial to debugging port problems.

Non-informative build log example (bad):

246

cc sourcel.o
CC source?.o
CCLD someprogram

Verbose build log example (good):

cc -02 -pipe -I/usr/local/include -c -o sourcel.o sourcel.c
cc -02 -pipe -I/usr/local/include -c -o source2.o sourcel.c
cc -0 someprogram sourcel.o source?2.o -L/usr/local/lib -1lsomelib

Some build systems such as CMake, ninja, and GNU configure are set up for verbose logging by the
ports framework. In other cases, ports might need individual tweaks.

13.11. Feedback

Do send applicable changes and patches to the upstream maintainer for inclusion in the next
release of the code. This makes updating to the next release that much easier.

13.12. README.html

README.html is not part of the port, but generated by make readme. Do not include this file in
patches or commits.

o If make readme fails, make sure that the default value of ECHO_MSG has not been
modified by the port.

13.13. Marking a Port Not Installable with BROKEN,
FORBIDDEN, or IGNORE

In certain cases, users must be prevented from installing a port. There are several variables that
can be used in a port’s Makefile to tell the user that the port cannot be installed. The value of these
make variables will be the reason that is shown to users for why the port refuses to install itself.
Please use the correct make variable. Each variable conveys radically different meanings, both to
users and to automated systems that depend on Makefiles, such as the ports build cluster,
FreshPorts, and portsmon.

13.13.1. Variables

* BROKEN is reserved for ports that currently do not compile, install, deinstall, or run correctly. Use
it for ports where the problem is believed to be temporary.

If instructed, the build cluster will still attempt to try to build them to see if the underlying
problem has been resolved. (However, in general, the cluster is run without this.)

For instance, use BROKEN when a port:

247

../keeping-up/index.html#build-cluster
../keeping-up/index.html#freshports
../keeping-up/index.html#portsmon

o does not compile
o fails its configuration or installation process
o installs files outside of ${PREFIX}

- does not remove all its files cleanly upon deinstall (however, it may be acceptable, and
desirable, for the port to leave user-modified files behind)

> has runtime issues on systems where it is supposed to run fine.

FORBIDDEN is used for ports that contain a security vulnerability or induce grave concern
regarding the security of a FreeBSD system with a given port installed (for example, a reputably
insecure program or a program that provides easily exploitable services). Mark ports as
FORBIDDEN as soon as a particular piece of software has a vulnerability and there is no released
upgrade. Ideally upgrade ports as soon as possible when a security vulnerability is discovered
so as to reduce the number of vulnerable FreeBSD hosts (we like being known for being secure),
however sometimes there is a noticeable time gap between disclosure of a vulnerability and an
updated release of the vulnerable software. Do not mark a port FORBIDDEN for any reason other
than security.

IGNORE is reserved for ports that must not be built for some other reason. Use it for ports where
the problem is believed to be structural. The build cluster will not, under any circumstances,
build ports marked as IGNORE. For instance, use IGNORE when a port:

> does not work on the installed version of FreeBSD
- has a distfile which may not be automatically fetched due to licensing restrictions

o does not work with some other currently installed port (for instance, the port depends on
www/apache20 but www/apache22 is installed)

If a port would conflict with a currently installed port (for example, if they
install a file in the same place that performs a different function), use
CONFLICTS instead. CONFLICTS will set IGNORE by itself.

13.13.2. Implementation Notes

Do

not quote the values of BROKEN, IGNORE, and related variables. Due to the way the information is

shown to the user, the wording of messages for each variable differ:

B

I

ROKEN= fails to link with base -lcrypto

GNORE= unsupported on recent versions

resulting in this output from make describe:

248

==> foobar-0.1 is marked as broken: fails to link with base -lcrypto.

https://cgit.freebsd.org/ports/tree/www/apache20/pkg-descr
https://cgit.freebsd.org/ports/tree/www/apache22/pkg-descr
../makefiles/index.html#conflicts
../makefiles/index.html#conflicts
../makefiles/index.html#conflicts

===> foobar-0.1 is unsupported on recent versions.

13.14. Architectural Considerations

13.14.1. General Notes on Architectures

FreeBSD runs on many more processor architectures than just the well-known x86-based ones.
Some ports have constraints which are particular to one or more of these architectures.

For the list of supported architectures, run:
cd ${SRCDIR}; make targets

The values are shown in the form TARGET/TARGET_ARCH. The ports read-only makevar ARCH is set based
on the value of TARGET_ARCH. Port Makefiles should test the value of this Makevar.

13.14.2. Marking a Port as Architecture Neutral

Ports that do not have any architecture-dependent files or requirements are identified by setting
NO_ARCH=yes.

NO_ARCH is meant to indicate that there is no need to build a package for each of the
supported architectures. The goal is to reduce the amount of resources spent on

o building and distributing the packages such as network bandwidth and disk space
on mirrors and on distribution media. Currently, however, our package
infrastructure (e.g., package managers, mirrors, and package builders) is not set up
to fully benefit from NO_ARCH.

13.14.3. Marking a Port as Ignored Only On Certain Architectures

* To mark a port as IGNOREd only on certain architectures, there are two other convenience
variables that will automatically set IGNORE: ONLY_FOR_ARCHS and NOT_FOR_ARCHS. Examples:

ONLY_FOR_ARCHS= 1386 amd64

NOT_FOR_ARCHS= iab4 sparc64

A custom IGNORE message can be set using ONLY_FOR_ARCHS_REASON and NOT_FOR_ARCHS_REASON. Per
architecture entries are possible with ONLY_FOR_ARCHS_REASON_ARCH and
NOT_FOR_ARCHS_REASON_ARCH.

» If a port fetches i386 binaries and installs them, set IA32_BINARY_PORT. If this variable is set,
/usr/lib32 must be present for IA32 versions of libraries and the kernel must support IA32

249

compatibility. If one of these two dependencies is not satisfied, IGNORE will be set automatically.

13.14.4. Cluster-Specific Considerations

« Some ports attempt to tune themselves to the exact machine they are being built on by
specifying -march=native to the compiler. This should be avoided: either list it under an off-by-
default option, or delete it entirely.

Otherwise, the default package produced by the build cluster might not run on every single
machine of that ARCH.

13.15. Marking a Port for Removal with DEPRECATED or
EXPIRATION_DATE

Do remember that BROKEN and FORBIDDEN are to be used as a temporary resort if a port is not
working. Permanently broken ports will be removed from the tree entirely.

When it makes sense to do so, users can be warned about a pending port removal with DEPRECATED
and EXPIRATION_DATE. The former is a string stating why the port is scheduled for removal; the latter
is a string in ISO 8601 format (YYYY-MM-DD). Both will be shown to the user.

It is possible to set DEPRECATED without an EXPIRATION_DATE (for instance, recommending a newer
version of the port), but the converse does not make any sense.

There is no set policy on how much notice to give. Current practice seems to be one month for
security-related issues and two months for build issues. This also gives any interested committers a
little time to fix the problem:s.

13.16. Avoid Use of the .error Construct

The correct way for a Makefile to signal that the port cannot be installed due to some external
factor (for instance, the user has specified an illegal combination of build options) is to set a non-
blank value to IGNORE. This value will be formatted and shown to the user by make install.

It is a common mistake to use .error for this purpose. The problem with this is that many
automated tools that work with the ports tree will fail in this situation. The most common
occurrence of this is seen when trying to build /usr/ports/INDEX (see Running make describe).
However, even more trivial commands such as make maintainer also fail in this scenario. This is not
acceptable.

250

../testing/index.html#make-describe
../testing/index.html#make-describe

{5 110. How to Avoid Using .error

The first of the next two Makefile snippets will cause make index to fail, while the second one
will not:

.error "option is not supported"

IGNORE=option is not supported

13.17. Usage of sysctl

The usage of sysctl is discouraged except in targets. This is because the evaluation of any makevars,
such as used during make index, then has to run the command, further slowing down that process.

Only use sysctl(8) through SYSCTL, as it contains the fully qualified path and can be overridden, if
one has such a special need.

13.18. Rerolling Distfiles

Sometimes the authors of software change the content of released distfiles without changing the
file’s name. Verify that the changes are official and have been performed by the author. It has
happened in the past that the distfile was silently altered on the download servers with the intent to
cause harm or compromise end user security.

Put the old distfile aside, download the new one, unpack them and compare the content with
diff(1). If there is nothing suspicious, update distinfo.

o Be sure to summarize the differences in the PR and commit log, so that other
people know that nothing bad has happened.

Contact the authors of the software and confirm the changes with them.

13.19. Use POSIX Standards

FreeBSD ports generally expect POSIX compliance. Some software and build systems make
assumptions based on a particular operating system or environment that can cause problems when
used in a port.

Do not use /proc if there are any other ways of getting the information. For example,
setprogname(argv[0]) in main() and then getprogname(3) to know the executable name.

Do not rely on behavior that is undocumented by POSIX.

Do not record timestamps in the critical path of the application if it also works without. Getting
timestamps may be slow, depending on the accuracy of timestamps in the OS. If timestamps are

251

https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=getprogname&sektion=3&format=html

really needed, determine how precise they have to be and use an API which is documented to just
deliver the needed precision.

A number of simple syscalls (for example gettimeofday(2), getpid(2)) are much faster on Linux®
than on any other operating system due to caching and the vsyscall performance optimizations. Do
not rely on them being cheap in performance-critical applications. In general, try hard to avoid
syscalls if possible.

Do not rely on Linux®-specific socket behavior. In particular, default socket buffer sizes are
different (call setsockopt(2) with SO_SNDBUF and SO_RCVBUF, and while Linux®'s send(2) blocks when
the socket buffer is full, FreeBSD’s will fail and set ENOBUFS in errno.

If relying on non-standard behavior is required, encapsulate it properly into a generic API, do a
check for the behavior in the configure stage, and stop if it is missing.

Check the man pages to see if the function used is a POSIX interface (in the "STANDARDS" section of
the man page).

Do not assume that /bin/sh is bash. Ensure that a command line passed to system(3) will work with
a POSIX compliant shell.

A list of common bashisms is available here.

Check that headers are included in the POSIX or man page recommended way. For example,
sys/types.h is often forgotten, which is not as much of a problem for Linux® as it is for FreeBSD.

13.20. Miscellanea

Always double-check pkg-descr and pkg-plist. If reviewing a port and a better wording can be
achieved, do so.

Do not copy more copies of the GNU General Public License into our system, please.

Please be careful to note any legal issues! Do not let us illegally distribute software!

252

https://www.freebsd.org/cgi/man.cgi?query=gettimeofday&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi?query=getpid&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi?query=setsockopt&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi?query=send&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi?query=system&sektion=3&format=html
https://wiki.ubuntu.com/DashAsBinSh

Chapter 14. A Sample Makefile

Here is a sample Makefile that can be used to create a new port. Make sure to remove all the extra
comments (ones between brackets).

The format shown is the recommended one for ordering variables, empty lines between sections,
and so on. This format is designed so that the most important information is easy to locate. We
recommend using portlint to check the Makefile.

[section to describe the port itself and the master site - PORTNAME
and PORTVERSION or the DISTVERSION* variables are always first,
followed by CATEGORIES, and then MASTER_SITES, which can be followed
by MASTER_SITE_SUBDIR. PKGNAMEPREFIX and PKGNAMESUFFIX, if needed,
will be after that. Then comes DISTNAME, EXTRACT_SUFX and/or
DISTFILES, and then EXTRACT_ONLY, as necessary.]

PORTNAME= xdvi

DISTVERSION= 18.2

CATEGORIES= print

[do not forget the trailing slash ("/")!

if not using MASTER_SITE_* macros]

MASTER_SITES= ${MASTER_SITE_XCONTRIB}

MASTER_SITE_SUBDIR= applications

PKGNAMEPREFIX= ja-

DISTNAME= xdvi-p118

[set this if the source is not in the standard ".tar.gz" form]

EXTRACT_SUFX= .tar.Z

[section for distributed patches -- can be empty]

PATCH_SITES= ftp://ftp.sra.co.jp/pub/X11/japanese/
PATCHFILES= xdvi-18.patch1.gz xdvi-18.patch2.gz

[If the distributed patches were not made relative to ${WRKSRC},
this may need to be tweaked]

PATCH_DIST_STRIP= -p1

[maintainer; *mandatory*! This is the person who is volunteering to
handle port updates, build breakages, and to whom a users can direct
questions and bug reports. To keep the quality of the Ports Collection
as high as possible, we do not accept new ports that are assigned to
"ports@FreeBSD.org".]

MAINTAINER= asami@FreeBSD.org

COMMENT= DVI Previewer for the X Window System

[license -- should not be empty]
LICENSE= BSD2CLAUSE
LICENSE_FILE= ${WRKSRC}/LICENSE

[dependencies -- can be empty]
RUN_DEPENDS= gs:print/ghostscript

[If it requires GNU make, not /usr/bin/make, to build...]

253

../quick-porting/index.html#porting-portlint

USES= gmake
[If it is an X application and requires "xmkmf -a" to be run...]
USES= imake

[this section is for other standard bsd.port.mk variables that do not]
belong to any of the above]

[If it asks questions during confiqure, build, install...]
IS_INTERACTIVE= yes

[If it extracts to a directory other than ${DISTNAME}...]

WRKSRC= ${WRKDIR}/xdvi-new

[If it requires a "configure" script generated by GNU autoconf to be run]

GNU_CONFIGURE= yes

[et cetera.]

[If it requires options, this section is for options]
OPTIONS_DEFINE= DOCS EXAMPLES FOO

OPTIONS_DEFAULT= FOO

[If options will change the files in plist]
OPTIONS_SUB=yes

FOO_DESC= Enable foo support
FOO_CONFIGURE_ENABLE= foo

[non-standard variables to be used in the rules below]
MY_FAVORITE_RESPONSE= "yeah, right"

[then the special rules, in the order they are called]
pre-fetch:
i go fetch something, yeah

post-patch:
i need to do something after patch, great

pre-install:
and then some more stuff before installing, wow

[and then the epilogue]

.include <bsd.port.mk>

254

Chapter 15. Order of Variables in Port
Makefiles

The first sections of the Makefile must always come in the same order. This standard makes it so
everyone can easily read any port without having to search for variables in a random order.

o The sections and variables described here are mandatory in a ordinary port. In a
slave port, many sections and variables can be skipped.

Each following block must be separated from the previous block by a single blank
line.

In the following blocks, only set the variables that are required by the port. Define
these variables in the order they are shown here.

15.1. PORTNAME Block

This block is the most important. It defines the port name, version, distribution file location, and
category. The variables must be in this order:

* PORTNAME

* PORTVERSION[1]

» DISTVERSIONPREFIX

» DISTVERSION[1]

* DISTVERSIONSUFFIX

* PORTREVISION

 PORTEPOCH

» CATEGORIES

» MASTER_SITES

» MASTER_SITE_SUBDIR (deprecated)

* PKGNAMEPREFIX

* PKGNAMESUFFIX

» DISTNAME

o EXTRACT_SUFX

o DISTFILES

 DIST_SUBDIR

o EXTRACT_ONLY

o Only one of PORTVERSION and DISTVERSION can be used.

255

../makefiles/index.html#makefile-portname
../makefiles/index.html#makefile-versions
../makefiles/index.html#makefile-versions
../makefiles/index.html#makefile-versions
../makefiles/index.html#makefile-versions
../makefiles/index.html#makefile-portrevision
../makefiles/index.html#makefile-portepoch
../makefiles/index.html#makefile-categories
../makefiles/index.html#makefile-master_sites
../makefiles/index.html#makefile-master_sites-shorthand
../makefiles/index.html#porting-pkgnameprefix-suffix
../makefiles/index.html#porting-pkgnameprefix-suffix
../makefiles/index.html#makefile-distname
../makefiles/index.html#makefile-extract_sufx
../makefiles/index.html#makefile-distfiles-definition
../makefiles/index.html#makefile-dist_subdir
../makefiles/index.html#makefile-extract_only

15.2. PATCHFILES Block

This block is optional. The variables are:

* PATCH_SITES
e PATCHFILES
* PATCH_DIST_STRIP

15.3. MAINTAINER Block

This block is mandatory. The variables are:

» MAINTAINER
o COMMENT

15.4. LICENSE Block

This block is optional, although it is highly recommended. The variables are:

» LICENSE

LICENSE_COMB

LICENSE_GROUPS or LICENSE_GROUPS_NAME

LICENSE_NAME or LICENSE_NAME_NAME

LICENSE_TEXT or LICENSE_TEXT_NAME

LICENSE_FILE or LICENSE_FILE_NAME

LICENSE_PERMS or LICENSE_PERMS_NAME_

LICENSE_DISTFILES or LICENSE_DISTFILES_NAME

If there are multiple licenses, sort the different LICENSE_VAR_NAME variables by license name.

15.5. Generic BROKEN/IGNORE/DEPRECATED Messages

This block is optional. The variables are:

» DEPRECATED

» EXPIRATION_DATE
* FORBIDDEN

* BROKEN

* BROKEN_*

» IGNORE

» IGNORE_*

256

../makefiles/index.html#porting-patchfiles
../makefiles/index.html#porting-patchfiles
../makefiles/index.html#porting-patchfiles
../makefiles/index.html#makefile-maintainer
../makefiles/index.html#makefile-comment
../makefiles/index.html#licenses-license
../makefiles/index.html#licenses-license_comb
../makefiles/index.html#licenses-license_groups
../makefiles/index.html#licenses-license_name
../makefiles/index.html#licenses-license_text
../makefiles/index.html#licenses-license_file
../makefiles/index.html#licenses-license_perms
../makefiles/index.html#licenses-license_distfiles
../porting-dads/index.html#dads-deprecated
../porting-dads/index.html#dads-deprecated
../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall

ONLY_FOR_ARCHS

ONLY_FOR_ARCHS _REASON*

NOT_FOR_ARCHS

NOT_FOR_ARCHS_REASON*

BROKEN_* and IGNORE_* can be any generic variables, for example, IGNORE_amd64,

BROKEN_FreeBSD_10, etc. With the exception of variables that depend on a USES, place

those in USES and USE_x. For instance, IGNORE_WITH_PHP only works if php is set, and
o BROKEN_SSL only if ss1 is set.

If the port is marked BROKEN when some conditions are met, and such conditions
can only be tested after including bsd.port.options.mk or bsd.port.pre.mk, then
those variables should be set later, in The Rest of the Variables.

15.6. The Dependencies Block

This block is optional. The variables are:

e FETCH_DEPENDS

EXTRACT_DEPENDS

PATCH_DEPENDS

BUILD_DEPENDS

LIB_DEPENDS

RUN_DEPENDS

TEST_DEPENDS

15.7. Flavors

This block is optional.

Start this section with defining FLAVORS. Continue with the possible Flavors helpers. See Using
FLAVORS for more Information.

Constructs setting variables not available as helpers using .if ${FLAVOR:U} == foo should go in their
respective sections below.

15.8. USES and USE _x

Start this section with defining USES, and then possible USE_x.

Keep related variables close together. For example, if using USE_GITHUB, always put the GH_*
variables right after it.

257

../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall
../porting-dads/index.html#dads-noinstall
../uses/index.html#uses
../uses/index.html#xuses-php
../uses/index.html#uses-ssl
../makefiles/index.html#makefile-fetch_depends
../makefiles/index.html#makefile-extract_depends
../makefiles/index.html#makefile-patch_depends
../makefiles/index.html#makefile-build_depends
../makefiles/index.html#makefile-lib_depends
../makefiles/index.html#makefile-run_depends
../flavors/index.html#flavors-using
../flavors/index.html#flavors-using
../makefiles/index.html#makefile-master_sites-github

15.9. Standard bsd.port.mk Variables

This section block is for variables that can be defined in bsd.port.mk that do not belong in any of
the previous section blocks.

Order is not important, however try to keep similar variables together. For example uid and gid
variables USERS and GROUPS. Configuration variables CONFIGURE_* and *_CONFIGURE. List of files, and
directories PORTDOCS and PORTEXAMPLES.

15.10. Options and Helpers

If the port uses the options framework, define OPTIONS_DEFINE and OPTIONS_DEFAULT first, then the
other OPTIONS_* variables first, then the *_DESC descriptions, then the options helpers. Try and sort
all of those alphabetically.

{5 111. Options Variables Order Example

The FO0 and BAR options do not have a standard description, so one need to be written. The
other options already have one in Mk/bsd.options.desc.mk so writing one is not needed. The
DOCS and EXAMPLES use target helpers to install their files, they are shown here for completeness,
though they belong in The Targets, so other variables and targets could be inserted before
them.

OPTIONS_DEFINE= DOCS EXAMPLES FOO BAR
OPTIONS_DEFAULT= FOO
OPTIONS_RADIO= SSL
OPTIONS_RADIO_SSL= OPENSSL GNUTLS
OPTIONS_SUB= yes

BAR_DESC= Enable bar support
FOO_DESC= Enable foo support

BAR_CONFIGURE_WITH= bar=${LOCALBASE}
FOO_CONFIGURE_ENABLE= foo
GNUTLS_CONFIGURE_ON= --with-ssl=gnutls
OPENSSL_CONFIGURE_ON= --with-ssl=openssl

post-install-DOCS-on:
${MKDIR} ${STAGEDIR}${DOCSDIR}
cd ${WRKSRC}/doc && ${COPYTREE_SHARE} . ${STAGEDIR}${DOCSDIR}

post-install-EXAMPLES-on:

${MKDIR} ${STAGEDIR}${EXAMPLESDIR}
cd ${WRKSRC}/ex && ${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR}

258

../makefiles/index.html#makefile-options

15.11. The Rest of the Variables

And then, the rest of the variables that are not mentioned in the previous blocks.

15.12. The Targets

After all the variables are defined, the optional make(1) targets can be defined. Keep pre- before
post- and in the same order as the different stages run:

fetch
extract
patch
confiqure
build
install
test
When using options helpers target keep them alphabetically sorted, but keep the
-on before the -off. When also using the main target, keep the main target before
the optional ones:
post-install:
install generic bits
Q -
post-install-DOCS-on:
-

Install documentation

post-install-X11-on:
Install X171 related bits

post-install-X11-off:
Install bits that should be there if X11 is disabled

259

https://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html

Chapter 16. Keeping Up

The FreeBSD Ports Collection is constantly changing. Here is some information on how to keep up.

16.1. FreshPorts

One of the easiest ways to learn about updates that have already been committed is by subscribing
to FreshPorts. Multiple ports can be monitored. Maintainers are strongly encouraged to subscribe,
because they will receive notification of not only their own changes, but also any changes that any
other FreeBSD committer has made. (These are often necessary to keep up with changes in the
underlying ports framework-although it would be most polite to receive an advance heads-up from
those committing such changes, sometimes this is overlooked or impractical. Also, in some cases,
the changes are very minor in nature. We expect everyone to use their best judgement in these
cases.)

To use FreshPorts, an account is required. Those with registered email addresses at @FreeBSD.org
will see the opt-in link on the right-hand side of the web pages. Those who already have a
FreshPorts account but are not using a @FreeBSD.org email address can change the email to
@FreeBSD.org, subscribe, then change it back again.

FreshPorts also has a sanity test feature which automatically tests each commit to the FreeBSD
ports tree. If subscribed to this service, a committer will receive notifications of any errors which
FreshPorts detects during sanity testing of their commits.

16.2. The Web Interface to the Source Repository

It is possible to browse the files in the source repository by using a web interface. Changes that
affect the entire port system are now documented in the CHANGES file. Changes that affect
individual ports are now documented in the UPDATING file. However, the definitive answer to any
question is undoubtedly to read the source code of bsd.port.mk, and associated files.

16.3. The FreeBSD Ports Mailing List

As a ports maintainer, consider subscribing to FreeBSD ports #B[5#E. Important changes to the way
ports work will be announced there, and then committed to CHANGES.

If the volume of messages on this mailing list is too high, consider following FreeBSD ports
announce mailing list which contains only announcements.

16.4. The FreeBSD Port Building Cluster

One of the least-publicized strengths of FreeBSD is that an entire cluster of machines is dedicated to
continually building the Ports Collection, for each of the major OS releases and for each Tier-1
architecture.

Individual ports are built unless they are specifically marked with IGNORE. Ports that are marked
with BROKEN will still be attempted, to see if the underlying problem has been resolved. (This is done

260

http://www.FreshPorts.org/
https://cgit.freebsd.org/ports/tree/CHANGES
https://cgit.FreeBSD.org/ports/tree/UPDATING
https://cgit.FreeBSD.org/ports/tree/Mk/bsd.port.mk
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports-announce
https://lists.FreeBSD.org/subscription/freebsd-ports-announce

by passing TRYBROKEN to the port’s Makefile.)

16.5. Portscout: the FreeBSD Ports Distfile Scanner

The build cluster is dedicated to building the latest release of each port with distfiles that have
already been fetched. However, as the Internet continually changes, distfiles can quickly go
missing. Portscout, the FreeBSD Ports distfile scanner, attempts to query every download site for
every port to find out if each distfile is still available. Portscout can generate HTML reports and
send emails about newly available ports to those who request them. Unless not otherwise
subscribed, maintainers are asked to check periodically for changes, either by hand or using the
RSS feed.

Portscout’s first page gives the email address of the port maintainer, the number of ports the
maintainer is responsible for, the number of those ports with new distfiles, and the percentage of
those ports that are out-of-date. The search function allows for searching by email address for a
specific maintainer, and for selecting whether only out-of-date ports are shown.

Upon clicking on a maintainer’s email address, a list of all of their ports is displayed, along with
port category, current version number, whether or not there is a new version, when the port was
last updated, and finally when it was last checked. A search function on this page allows the user to
search for a specific port.

Clicking on a port name in the list displays the FreshPorts port information.

Additional documentation is available in the Portscout repository.

16.6. The FreeBSD Ports Monitoring System

Another handy resource is the FreeBSD Ports Monitoring System (also known as portsmon). This
system comprises a database that processes information from several sources and allows it to be
browsed via a web interface. Currently, the ports Problem Reports (PRs), the error logs from the
build cluster, and individual files from the ports collection are used. In the future, this will be
expanded to include the distfile survey, as well as other sources.

To get started, use the Overview of One Port search page to find all the information about a port.

This is the only resource available that maps PR entries to portnames. PR submitters do not always
include the portname in their Synopsis, although we would prefer that they did. So, portsmon is a
good place to find out whether an existing port has any PRs filed against it, any build errors, or if a
new port the porter is considering creating has already been submitted.

o The FreeBSD Ports Monitoring System (portsmon) is currently not working due to
latest Python updates.

261

http://portscout.FreeBSD.org
http://freshports.org
https://github.com/freebsd/portscout
http://portsmon.FreeBSD.org
http://portsmon.FreeBSD.org/portoverview.py

Chapter 17. Using USES Macros

17.1. An Introduction to USES

USES macros make it easy to declare requirements and settings for a port. They can add
dependencies, change building behavior, add metadata to packages, and so on, all by selecting
simple, preset values.

Each section in this chapter describes a possible value for USES, along with its possible arguments.
Arguments are appended to the value after a colon (:). Multiple arguments are separated by
commas (,).

{5l 112. Using Multiple Values

USES= bison perl

{5 113. Adding an Argument

USES= tar:xz

{5l 114. Adding Multiple Arguments

USES= drupal:7,theme

{5l 115. Mixing it All Together

USES= pgsql:9.3+ cpe python:2.7,build

17.2. 7z

Possible arguments: (none), p7zip, partial

Extract using 7z(1) instead of bsdtar(1) and sets EXTRACT_SUFX=.7z. The p7zip option forces a
dependency on the 7z from archivers/p7zip if the one from the base system is not able to extract the
files. EXTRACT_SUFX is not changed if the partial option is used, this can be used if the main
distribution file does not have a .7z extension.

262

https://www.freebsd.org/cgi/man.cgi?query=7z&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=bsdtar&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/archivers/p7zip/pkg-descr

17.3. ada

Possible arguments: (none), 5, 6

Depends on an Ada-capable compiler, and sets CC accordingly. Defaults to use gcc 5 from ports. Use
the :_X_ version option to force building with a different version.

17.4. autoreconf
Possible arguments: (none), build

Runs autoreconf. It encapsulates the aclocal, autoconf, autoheader, automake, autopoint, and
libtoolize commands. Each command applies to ${AUTORECONF_WRKSRC}/configure.ac or its old
name, ${AUTORECONF_WRKSRC}/configure.in. If configure.ac defines subdirectories with their
own configure.ac using AC_CONFIG_SUBDIRS, autoreconf will recursively update those as well. The
:build argument only adds build time dependencies on those tools but does not run autoreconf. A
port can set AUTORECONF_WRKSRC if WRKSRC does not contain the path to configure.ac.

17.5. blaslapack

Possible arguments: (none), atlas, netlib (default), gotoblas, openblas

Adds dependencies on Blas / Lapack libraries.

17.6. bdb

Possible arguments: (none), 48, 5 (default), 6

Add dependency on the Berkeley DB library. Default to databases/db5. It can also depend on
databases/db48 when using the :48 argument or databases/db6 with :6. It is possible to declare a
range of acceptable values, :48+ finds the highest installed version, and falls back to 4.8 if nothing
else is installed. INVALID_BDB_VER can be used to specify versions which do not work with this port.
The framework exposes the following variables to the port:

BDB_LIB_NAME

The name of the Berkeley DB library. For example, when using databases/db5, it contains db-5.3.

BDB_LIB_CXX_NAME

The name of the Berkeley DBC++ library. For example, when using databases/db5, it contains
db_cxx-5.3.

BDB_INCLUDE_DIR

The location of the Berkeley DB include directory. For example, when using databases/db5, it will
contain ${LOCALBASE}/include/db5.

BDB_LIB_DIR

The location of the Berkeley DB library directory. For example, when using databases/db5, it
contains ${LOCALBASE}/1ib.

263

https://cgit.freebsd.org/ports/tree/databases/db5/pkg-descr
https://cgit.freebsd.org/ports/tree/databases/db48/pkg-descr
https://cgit.freebsd.org/ports/tree/databases/db6/pkg-descr
https://cgit.freebsd.org/ports/tree/databases/db5/pkg-descr
https://cgit.freebsd.org/ports/tree/databases/db5/pkg-descr
https://cgit.freebsd.org/ports/tree/databases/db5/pkg-descr
https://cgit.freebsd.org/ports/tree/databases/db5/pkg-descr

BDB_VER

The detected Berkeley DB version. For example, if using USES=bdb:48+ and Berkeley DB 5 is
installed, it contains 5.

o databases/db48 is deprecated and unsupported. It must not be used by any port.

17.7. bison

Possible arguments: (none), build, run, both

Uses devel/bison By default, with no arguments or with the build argument, it implies bison is a
build-time dependency, run implies a run-time dependency, and both implies both run-time and
build-time dependencies.

17.8. cabal

o Ports should not be created for Haskell libraries, see Haskell Libraries for more
information.

Possible arguments: (none), hpack

Sets default values and targets used to build Haskell software using Cabal. A build dependency on
the Haskell compiler port (GHC) is added. If hpack argument is given, a build dependency on
devel/hs-hpack is added and hpack is invoked at configuration step to generate. cabal file.

The framework provides the following variables:

USE_CABAL

If the software uses Haskell dependencies, list them in this variable. Each item should be present
on Hackage and be listed in form packagename-0.1.2. Dependencies can have revisions, which are
specified after the _ symbol. Automatic generation of dependency list is supported, see Building
Haskell Applications with cabal.

CABAL _FLAGS

List of flags to be passed to cabal-install during the configuring and building stage. The flags
are passed verbatim.

EXECUTABLES

List of executable files installed by the port. Default value: ${PORTNAME}. Items from this list are
automatically added to pkg-plist.

SKIP_CABAL_PLIST
If defined, do not add items from ${EXECUTABLES} to pkg-plist.

opt_USE_CABAL
Adds items to ${USE_CABAL} depending on opt option.

264

https://cgit.freebsd.org/ports/tree/databases/db48/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/bison/pkg-descr
../special/index.html#haskell-libs
https://cgit.freebsd.org/ports/tree/devel/hs-hpack/pkg-descr
../special/index.html#using-cabal
../special/index.html#using-cabal
../special/index.html#using-cabal

opt_EXECUTABLES
Adds items to ${EXECUTABLES} depending on opt option.

opt_CABAL_FLAGS

If opt is enabled, append the value to ${CABAL_FLAGS}. Otherwise, append -value to disable the
flag.

FOO_DATADIR_VARS

For an executable named FO00 list Haskell packages, whose data files should be accessible by the
executable.

17.9. cargo
Possible arguments: (none)

Uses Cargo for configuring, building, and testing. It can be used to port Rust applications that use
the Cargo build system. For more information see Building Rust Applications with cargo.

17.10. charsetfix

Possible arguments: (none)

Prevents the port from installing charset.alias. This must be installed only by converters/libiconv.
CHARSETFIX_MAKEFILEIN can be set to a path relative to WRKSRC if charset.alias is not installed by
${WRKSRC}/Makefile.in.

17.11. cmake

Possible arguments: (none), insource, noninja, run, testing
Use CMake for configuring the port and generating a build system.

By default an out-of-source build is performed, leaving the sources in WRKSRC free from build
artifacts. With the insource argument, an in-source build will be performed instead. This argument
should be an exception, used only when a regular out-of-source build does not work.

By default Ninja (devel/ninja) is used for the build. In some cases this does not work correctly. With
the noninja argument, the build will use regular make for builds. This argument should only be used
if a Ninja-based build does not work.

With the run argument, a run dependency is registered in addition to a build dependency.

With the testing argument, a test-target is added that uses CTest. When running tests the port will
be re-configured for testing and re-built.

For more information see Using cmake.

265

../special/index.html#using-cargo
../special/index.html#using-cargo
https://cgit.freebsd.org/ports/tree/converters/libiconv/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/ninja/pkg-descr
../special/index.html#using-cmake
../special/index.html#using-cmake

17.12. compiler

Possible arguments: (none), env (default, implicit), {c-plus-plus}17-1ang, {c-plus-plus}14-lang, {c-

plus-plus}11-lang, gcc-{c-plus-plus}11-1ib, {c-plus-plus}11-1ib, {c-plus-plus}@dx, c11, nestedfct,
features

Determines which compiler to use based on any given wishes. Use {c-plus-plus}17-1ang if the port
needs a {c-plus-plus}17-capable compiler, {c-plus-plus}14-lang if the port needs a {c-plus-plus}14-
capable compiler, {c-plus-plus}11-1lang if the port needs a {c-plus-plus}11-capable compiler, gcc-{c-
plus-plus}11-1ib if the port needs the g++ compiler with a {c-plus-plus}11 library, or {c-plus-
plus}11-1ib if the port needs a {c-plus-plus}11-ready standard library. If the port needs a compiler
understanding {c-plus-plus}0X, C11 or nested functions, the corresponding parameters should be
used.

Use features to request a list of features supported by the default compiler. After including
bsd.port.pre.mk the port can inspect the results using these variables:
* COMPILER_TYPE: the default compiler on the system, either gcc or clang

o ALT_COMPILER_TYPE: the alternative compiler on the system, either gcc or clang. Only set if two
compilers are present in the base system.

» COMPILER_VERSION: the first two digits of the version of the default compiler.
o ALT_COMPILER_VERSION: the first two digits of the version of the alternative compiler, if present.
* CHOSEN_COMPILER_TYPE: the chosen compiler, either gcc or clang

* COMPILER_FEATURES: the features supported by the default compiler. It currently lists the {c-plus-
plus} library.

17.13. cpe

Possible arguments: (none)

Include Common Platform Enumeration (CPE) information in package manifest as a CPE 2.3
formatted string. See the CPE specification for details. To add CPE information to a port, follow
these steps:

1. Search for the official CPE entry for the software product either by using the NVD’s CPE search
engine or in the official CPE dictionary (warning, very large XML file). Do not ever make up CPE
data.

2. Add cpe to USES and compare the result of make -V CPE_STR to the CPE dictionary entry. Continue
one step at a time until make -V CPE_STRis correct.

If the product name (second field, defaults to PORTNAME) is incorrect, define CPE_PRODUCT.
If the vendor name (first field, defaults to CPE_PRODUCT) is incorrect, define CPE_VENDOR.
If the version field (third field, defaults to PORTVERSION) is incorrect, define CPE_VERSION.
If the update field (fourth field, defaults to empty) is incorrect, define CPE_UPDATE.

A -

If it is still not correct, check Mk/Uses/cpe.mk for additional details, or contact the Ports Security

266

http://scap.nist.gov/specifications/cpe/
http://web.nvd.nist.gov/view/cpe/search
http://web.nvd.nist.gov/view/cpe/search
http://static.nvd.nist.gov/feeds/xml/cpe/dictionary/official-cpe-dictionary_v2.3.xml

Team <ports-secteam@FreeBSD.org>.

8. Derive as much as possible of the CPE name from existing variables such as PORTNAME and
PORTVERSION. Use variable modifiers to extract the relevant portions from these variables rather
than hardcoding the name.

9. Always run make -V CPE_STR and check the output before committing anything that changes
PORTNAME or PORTVERSION or any other variable which is used to derive CPE_STR.

17.14. cran

Possible arguments: (none), auto-plist, compiles

Uses the Comprehensive R Archive Network. Specify auto-plist to automatically generate pkg-plist.
Specify compiles if the port has code that need to be compiled.

17.15. desktop-file-utils

Possible arguments: (none)

Uses update-desktop-database from devel/desktop-file-utils. An extra post-install step will be run
without interfering with any post-install steps already in the port Makefile. A line with @desktop-
file-utils will be added to the plist.

17.16. desthack

Possible arguments: (none)

Changes the behavior of GNU configure to properly support DESTDIR in case the original software
does not.

17.17. display

Possible arguments: (none), ARGS

Set up a virtual display environment. If the environment variable DISPLAY is not set, then Xvfb is
added as a build dependency, and CONFIGURE_ENV is extended with the port number of the currently
running instance of Xvfb. The ARGS parameter defaults to install and controls the phase around
which to start and stop the virtual display.

17.18. dos2unix

Possible arguments: (none)

The port has files with line endings in DOS format which need to be converted. Several variables
can be set to control which files will be converted. The default is to convert all files, including
binaries. See Simple Automatic Replacements for examples.

» DOS2UNIX_REGEX: match file names based on a regular expression.

267

mailto:ports-secteam@FreeBSD.org
https://cgit.freebsd.org/ports/tree/devel/desktop-file-utils/pkg-descr
../slow-porting/index.html#slow-patch-automatic-replacements

e DOS2UNIX_FILES: match literal file names.
* DOS2UNIX_GLOB: match file names based on a glob pattern.
 DOS2UNIX_WRKSRC: the directory from which to start the conversions. Defaults to ${WRKSRC}.

17.19. drupal

Possible arguments: 7, module, theme

Automate installation of a port that is a Drupal theme or module. Use with the version of Drupal
that the port is expecting. For example, USES=drupal:7,module says that this port creates a Drupal 6
module. A Drupal 7 theme can be specified with USES=drupal:7, theme.

17.20. eigen

Possible arguments: 2, 3, build (default), run

Add dependency on math/eigen.

17.21. fakeroot

Possible arguments: (none)

Changes some default behavior of build systems to allow installing as a wuser. See
https://wiki.debian.org/FakeRoot for more information on fakeroot.

17.22. fam

Possible arguments: (none), fam, gamin

Uses a File Alteration Monitor as a library dependency, either devel/fam or devel/gamin. End users
can set WITH_FAM_SYSTEM to specify their preference.

17.23. firebird

Possible arguments: (none), 25

Add a dependency to the client library of the Firebird database.

17.24. fonts

Possible arguments: (none), fc, fcfontsdir (default), fontsdir, none

Adds a runtime dependency on tools needed to register fonts. Depending on the argument, add a
@fc ${FONTSDIR} line, @fcfontsdir ${FONTSDIR} line, @fontsdir ${FONTSDIR} line, or no line if the
argument is none, to the plist. FONTSDIR defaults to ${PREFIX}/share/fonts/${FONTNAME} and
FONTNAME to ${PORTNAME}. Add FONTSDIR to PLIST_SUB and SUB_LIST

268

https://cgit.freebsd.org/ports/tree/math/eigen/pkg-descr
https://wiki.debian.org/FakeRoot
https://cgit.freebsd.org/ports/tree/devel/fam/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/gamin/pkg-descr
../plist/index.html#plist-keywords-fc
../plist/index.html#plist-keywords-fcfontsdir
../plist/index.html#plist-keywords-fontsdir

17.25. fortran

Possible arguments: gcc (default)

Uses the GNU Fortran compiler.

17.26. fuse

Possible arguments: 2 (default), 3

The port will depend on the FUSE library and handle the dependency on the kernel module
depending on the version of FreeBSD.

17.27. gem

Possible arguments: (none), noautoplist

Handle building with RubyGems. If noautoplist is used, the packing list is not generated
automatically.

17.28. gettext

Possible arguments: (none)

Deprecated. Will include both gettext-runtime and gettext-tools.

17.29. gettext-runtime

Possible arguments: (none), 1ib (default), build, run

Uses devel/gettext-runtime. By default, with no arguments or with the 1ib argument, implies a
library dependency on libintl.so. build and run implies, respectively a build-time and a run-time
dependency on gettext.

17.30. gettext-tools

Possible arguments: (none), build (default), run

Uses devel/gettext-tools. By default, with no argument, or with the build argument, a build time
dependency on msgfmt is registered. With the run argument, a run-time dependency is registered.

17.31. ghostscript

Possible arguments: X, build, run, nox11

A specific version X can be used. Possible versions are 7, 8, 9, and agpl (default). nox11 indicates that
the -nox11 version of the port is required. build and run add build- and run-time dependencies on

269

https://cgit.freebsd.org/ports/tree/devel/gettext-runtime/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/gettext-tools/pkg-descr

Ghostscript. The default is both build- and run-time dependencies.

17.32. g1

Possible arguments: (none)

Provides an easy way to depend on GL components. The components should be listed in USE_GL. The
available components are:

eqgl
add a library dependency on libEGL.so from graphics/libglvnd

gbm

Add a library dependency on libgbm.so from graphics/mesa-libs

gl
Add a library dependency on libGL.so from graphics/libglvnd

glesv?
Add a library dependency on libGLESv2.so from graphics/libglvnd

glew
Add a library dependency on libGLEW.so from graphics/glew

glu
Add a library dependency on libGLU.so from graphics/libGLU

glut
Add a library dependency on libglut.so from graphics/freeglut

opengl

Add a library dependency on libOpenGL.so from graphics/libglvnd

17.33. gmake

Possible arguments: (none)

Uses devel/gmake as a build-time dependency and sets up the environment to use gmake as the
default make for the build.

17.34. gnome

Possible arguments: (none)

Provides an easy way to depend on GNOME components. The components should be listed in
USE_GNOME. The available components are:

e atk

270

https://cgit.freebsd.org/ports/tree/graphics/libglvnd/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/mesa-libs/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/libglvnd/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/libglvnd/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/glew/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/libGLU/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/freeglut/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/libglvnd/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/gmake/pkg-descr

atkmm

cairo

cairomm

dconf

esound
evolutiondataserver3
gconf2
gconfmm26
gdkpixbuf
gdkpixbuf2
glib12

glib20

glibmm
gnomecontrolcenter3
gnomedesktop3
gnomedocutils
gnomemenus3
gnomemimedata
gnomeprefix
gnomesharp20
gnomevfs?
gsound
gtk-update-icon-cache
gtk12

gtk20

gtk30

gtkhtml3
gtkhtml4
gtkmm20
gtkmm24
gtkmm30
gtksharp20
gtksourceview
gtksourceview?

gtksourceview3

271

* gtksourceviewmm3
e gvfs

* intlhack

* intltool

* introspection
» libartlgpl2

* libbonobo

* libbonoboui

* libgdab

* libgda5-ui

* libgdammb

* libglade2

* libgnome

» libgnomecanvas
* libgnomekbd

* libgnomeprint
* libgnomeprintui
* libgnomeui

* libgsf

* libgtkhtml

* libgtksourceviewmm
* libidl

* librsvg2

* libsigc++12

* libsigc++20

* libwnck

* libwnck3

o libxml++26

* libxml2

* libxslt

* metacity

* nautilus3

* orbit2

* pango

* pangomm

272

* pangox-compat

* py3gobject3

* pygnome?

* pygobject

* pygobject3

* pygtk2

* pygtksourceview
* referencehack

* vte

* vte3
The default dependency is build- and run-time, it can be changed with :build or :run. For example:

USES= gnome
USE_GNOME= gnomemenus3:build intlhack

See Using GNOME for more information.

17.35. go

o Ports should not be created for Go libs, see Go Libraries for more information.

Possible arguments: (none), modules, no_targets, run

Sets default values and targets used to build Go software. A build dependency on the Go compiler
port selected via GO_PORT is added. By default the build is performed in GOPATH mode. If Go
software uses modules, the modules-aware mode can be switched on with modules argument.
no_targets will setup build environment like GO_ENV, GO_BUILDFLAGS but skip creating post-extract
and do-{build,install, test} targets. run will also add a run dependency on what is in G0_PORT.

The build process is controlled by several variables:

GO_MODULE

The name of the application module as specified by the module directive in go.mod. In most cases,
this is the only required variable for ports that use Go modules.

GO_PKGNAME

The name of the Go package when building in GOPATH mode. This is the directory that will be
created in ${GOPATH}/src. If not set explicitly and GH_SUBDIR or GL_SUBDIR is present, GO_PKGNAME
will be inferred from it. It is not needed when building in modules-aware mode.

GO_TARGET

The packages to build. The default value is ${G0_PKGNAME}. GO_TARGET can also be a tuple in the
form package:path where path can be either a simple filename or a full path starting with

273

../special/index.html#using-gnome
../special/index.html#go-libs

${PREFIX}.

GO_TESTTARGET
The packages to test. The default value is ./-- (the current package and all subpackages).

CGO_CFLAGS
Additional CFLAGS values to be passed to the C compiler by go.

CGO_LDFLAGS
Additional LDFLAGS values to be passed to the C compiler by go.

GO_BUILDFLAGS
Additional build arguments to be passed to go build.

GO_TESTFLAGS

Additional build arguments to be passed to go test.

GO_PORT

The Go compiler port to use. By default this is lang/go but can be set to lang/go-devel in make.conf
for testing with future Go versions.

A This variable must not be set by individual ports!

See Building Go Applications for usage examples.

17.36. gperf

Possible arguments: (none)

Add a buildtime dependency on devel/gperf if gperf is not present in the base system.

17.37. grantlee

Possible arguments: 5, selfbuild

Handle dependency on Grantlee. Specify 5 to depend on the Qt5 based version, devel/grantlee5.
selfbuild is used internally by devel/grantlee5 to get their versions numbers.

17.38. groff

Possible arguments: build, run, both

Registers a dependency on textproc/groff if not present in the base system.

17.39. gssap1

Possible arguments: (none), base (default), heimdal, mit, flags, bootstrap

274

https://cgit.freebsd.org/ports/tree/lang/go/pkg-descr
https://cgit.freebsd.org/ports/tree/lang/go-devel/pkg-descr
../special/index.html#using-go
https://cgit.freebsd.org/ports/tree/devel/gperf/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/grantlee5/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/grantlee5/pkg-descr
https://cgit.freebsd.org/ports/tree/textproc/groff/pkg-descr

Handle dependencies needed by consumers of the GSS-API. Only libraries that provide the Kerberos
mechanism are available. By default, or set to base, the GSS-API library from the base system is
used. Can also be set to heimdal to use security/heimdal, or mit to use security/krb5.

When the local Kerberos installation is not in LOCALBASE, set HEIMDAL HOME (for heimdal) or KRB5_ HOME
(for krbb) to the location of the Kerberos installation.

These variables are exported for the ports to use:

* GSSAPIBASEDIR

GSSAPICPPFLAGS

GSSAPIINCDIR

GSSAPILDFLAGS

GSSAPILIBDIR

GSSAPILIBS

GSSAPI_CONFIGURE_ARGS

The flags option can be given alongside base, heimdal, or mit to automatically add GSSAPICPPFLAGS,
GSSAPILDFLAGS, and GSSAPILIBS to CFLAGS, LDFLAGS, and LDADD, respectively. For example, use
base, flags.

The bootstrap option is a special prefix only for use by security/krb5 and security/heimdal. For
example, use bootstrap,mit.

{5 116. Typical Use

OPTIONS_SINGLE= GSSAPI
OPTIONS_SINGLE_GSSAPI= GSSAPI_BASE GSSAPI_HEIMDAL GSSAPI_MIT GSSAPI_NONE

GSSAPI_BASE_USES= gssapi

GSSAPI_BASE_CONFIGURE_ON= --with-gssapi=${GSSAPIBASEDIR}
${GSSAPI_CONFIGURE _ARGS}

GSSAPI_HEIMDAL USES= gssapi:heimdal

GSSAPI_HEIMDAL _CONFIGURE_ON= --with-gssapi=${GSSAPIBASEDIR}
${GSSAPI_CONFIGURE_ARGS}

GSSAPI_MIT_USES= gssapi:mit

GSSAPI_MIT_CONFIGURE_ON= --with-gssapi=${GSSAPIBASEDIR}
${GSSAPI_CONFIGURE_ARGS}
GSSAPI_NONE_CONFIGURE_ON= --without-gssapi

17.40. horde

Possible arguments: (none)

Add buildtime and runtime dependencies on devel/pear-channel-horde. Other Horde dependencies

275

https://cgit.freebsd.org/ports/tree/security/heimdal/pkg-descr
https://cgit.freebsd.org/ports/tree/security/krb5/pkg-descr
https://cgit.freebsd.org/ports/tree/security/krb5/pkg-descr
https://cgit.freebsd.org/ports/tree/security/heimdal/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/pear-channel-horde/pkg-descr

can be added with USE_HORDE _BUILD and USE_HORDE _RUN. See Horde Modules for more information.

17.41. iconv

Possible arguments: (none), 1ib, build, patch, translit, wchar_t

Uses iconv functions, either from the port converters/libiconv as a build-time and run-time
dependency, or from the base system. By default, with no arguments or with the 1ib argument,
implies iconv with build-time and run-time dependencies. build implies a build-time dependency,
and patch implies a patch-time dependency. If the port uses the WCHAR_T or //TRANSLIT iconv
extensions, add the relevant arguments so that the correct iconv is used. For more information see
Using iconv.

17.42. imake

Possible arguments: (none), env, notall, noman

Add devel/imake as a build-time dependency and run xmkmf -a during the configure stage. If the env
argument is given, the configure target is not set. If the -a flag is a problem for the port, add the
notall argument. If xmkmf does not generate a install.man target, add the noman argument.

17.43. kde

Possible arguments: 5

Add dependency on KDE components. See Using KDE for more information.

17.44. kmod

Possible arguments: (none), debug
Fills in the boilerplate for kernel module ports, currently:

* Add k1d to CATEGORIES.

Set SSP_UNSAFE.

Set IGNORE if the kernel sources are not found in SRC_BASE.

Define KMODDIR to /boot/modules by default, add it to PLIST_SUB and MAKE_ENV, and create it upon
installation. If KMODDIR is set to /boot/kernel, it will be rewritten to /boot/modules. This prevents
breaking packages when upgrading the kernel due to /boot/kernel being renamed to
/boot/kernel.old in the process.

* Handle cross-referencing kernel modules upon installation and deinstallation, using @k1d.

o If the debug argument is given, the port can install a debug version of the module into
KERN_DEBUGDIR/KMODDIR. By default, KERN_DEBUGDIR is copied from DEBUGDIR and set to
/usr/lib/debug. The framework will take care of creating and removing any required directories.

276

../special/index.html#php-horde
https://cgit.freebsd.org/ports/tree/converters/libiconv/pkg-descr
../special/index.html#using-iconv
../special/index.html#using-iconv
https://cgit.freebsd.org/ports/tree/devel/imake/pkg-descr
../special/index.html#using-kde
../plist/index.html#plist-keywords-kld

17.45. 1ha

Possible arguments: (none)

Set EXTRACT_SUFX to .1zh

17.46. 1ibarchive

Possible arguments: (none)

Registers a dependency on archivers/libarchive. Any ports depending on libarchive must include
USES=11ibarchive

17.47. 1ibedit

Possible arguments: (none)

Registers a dependency on devel/libedit. Any ports depending on libedit must include USES=11ibedit.

17.48. 1ibtool

Possible arguments: (none), keepla, build

Patches libtool scripts. This must be added to all ports that use libtool. The keepla argument can
be used to keep .1a files. Some ports do not ship with their own copy of libtool and need a build time
dependency on devel/libtool, use the :build argument to add such dependency.

17.49. 1inux

Possible arguments: c6, c¢7

Ports Linux compatibility framework. Specify c6 to depend on CentOS 6 packags. Specify c7 to
depend on CentOS 7 packages. The available packages are:

* allegro

* alsa-plugins-oss

* alsa-plugins-pulseaudio

* alsalib

* atk

* avahi-1libs

* base

* cairo

* cups-libs

e curl

277

https://cgit.freebsd.org/ports/tree/archivers/libarchive/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/libedit/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/libtool/pkg-descr

* cyrus-sasl?
 dbusglib

* dbuslibs

* devtools

e dri

* expat

* flac

» fontconfig
» gdkpixbuf2
* gnutls

* graphite2

* gtk2

* harfbuzz

* jasper

* jbigkit

* jpeg

* libasyncns
* libaudiofile
* libelf

* libgerypt

* libgfortran
» libgpg-error
* libmng

* libogg

* libpciaccess
* libsndfile
* libsoup

* libssh2

* libtasn1

* libthai

* libtheora

» libv4l

* libvorbis

* libxml2

e mikmod

278

* naslibs

* ncurses-base
* nspr

* nss

* openal

* openal-soft
* openldap

* openmotif

* openssl

* pango

* pixman

* png

* pulseaudio-libs
oqt

o gqt-x11

o qtwebkit

e scimlibs

* sdl12

» sdlimage

* sdlmixer

* sqlite3

* tcl85

* tcp_wrappers-1libs
o tiff

» tk85

* ucl

* xorglibs

17.50. localbase

Possible arguments: (none), 1dflags

Ensures that libraries from dependencies in LOCALBASE are used instead of the ones from the base
system. Specify 1dflags to add -L${LOCALBASE}/1ib to LDFLAGS instead of LIBS. Ports that depend on
libraries that are also present in the base system should use this. It is also used internally by a few
other USES.

279

17.51. lua

Possible arguments: (none), XY, XY+, -XY, XY-7A, module, flavors, build, run, env

Adds a dependency on Lua. By default this is a library dependency, unless overridden by the build
and/or run option. The env option prevents the addition of any dependency, while still defining all
the usual variables.

The default version is set by the usual DEFAULT_VERSIONS mechanism, unless a version or range of
versions is specified as an argument, for example, 51 or 51-53.

Applications using Lua are normally built for only a single Lua version. However, library modules
intended to be loaded by Lua code should use the module option to build with multiple flavors.

For more information see Using Lua.

17.52. 1xqt

Possible arguments: (none)

Handle dependencies for the LXQt Desktop Environment. Use USE_LXQT to select the components
needed for the port. See Using LXQt for more information.

17.53. makeinfo

Possible arguments: (none)

Add a build-time dependency on makeinfo if it is not present in the base system.

17.54. makeself

Possible arguments: (none)

Indicates that the distribution files are makeself archives and sets the appropriate dependencies.

17.55. mate

Possible arguments: (none)

Provides an easy way to depend on MATE components. The components should be listed in
USE_MATE. The available components are:

* autogen

* caja

* common

* controlcenter

* desktop

280

../special/index.html#using-lua
../special/index.html#using-lxqt

* dialogs

* docutils

* icontheme

* intlhack

* intltool

* libmatekbd

* libmateweather
* marco

* menus

* notificationdaemon
* panel

* pluma

* polkit

* session

» settingsdaemon

The default dependency is build- and run-time, it can be changed with :build or :run. For example:

USES= mate
USE_MATE= menus:build intlhack

17.56. meson

Possible arguments: (none)

Provide support for Meson based projects. For more information see Using meson.

17.57. metaport

Possible arguments: (none)

Sets the following variables to make it easier to create a metaport: MASTER_SITES, DISTFILES,
EXTRACT _ONLY, NO_BUILD, NO_INSTALL, NO_MTREE, NO_ARCH.

17.58. mysql

Possible arguments: (none), version, client (default), server, embedded

Provide support for MySQL If no version is given, try to find the current installed version. Fall back
to the default version, MySQL-5.6. The possible versions are 55, 55m, 55p, 56, 56p, 56w, 57, 57p, 80, 100m,
101m, and 102m. The m and p suffixes are for the MariaDB and Percona variants of MySQL. server and

281

../special/index.html#using-meson
../special/index.html#using-meson

embedded add a build- and run-time dependency on the MySQL server. When using server or
embedded, add client to also add a dependency on libmysqlclient.so. A port can set IGNORE_WITH_MYSQL
if some versions are not supported.

The framework sets MYSQL_VER to the detected MySQL version.

17.59. mono

Possible arguments: (none), nuget

Adds a dependency on the Mono (currently only C#) framework by setting the appropriate
dependencies.

Specify nuget when the port uses nuget packages. NUGET_DEPENDS needs to be set with the names and
versions of the nuget packages in the format name=version. An optional package origin can be added
using name=version:_origin_.

The helper target, buildnuget, will output the content of the NUGET_DEPENDS based on the provided
packages.config.

17.60. motif

Possible arguments: (none)

Uses x11-toolkits/open-motif as a library dependency. End users can set WANT_LESSTIF for the
dependency to be on x11-toolkits/lesstif instead of x11-toolkits/open-motif.

17.61. ncurses

Possible arguments: (none), base, port

Uses ncurses, and causes some useful variables to be set.

17.62. ninja

Possible arguments: (none)

Uses ninja to build the port.

17.63. objc

Possible arguments: (none)

Add objective C dependencies (compiler, runtime library) if the base system does not support it.

17.64. openal

Possible arguments: al, soft (default), si, alut

282

https://cgit.freebsd.org/ports/tree/x11-toolkits/open-motif/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-toolkits/lesstif/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-toolkits/open-motif/pkg-descr

Uses OpenAL. The backend can be specified, with the software implementation as the default. The
user can specify a preferred backend with WANT_OPENAL. Valid values for this knob are soft (default)
and si.

17.65. pathfix

Possible arguments: (none)

Look for Makefile.in and configure in PATHFIX_WRKSRC (defaults to WRKSRC) and fix common paths to
make sure they respect the FreeBSD hierarchy. For example, it fixes the installation directory of
pkgconfig’s .pc files to ${PREFIX}/libdata/pkgconfig. If the port uses ‘USES=autoreconf,
Makefile.am will be added to PATHFIX_MAKEFILEIN automatically.

If the port USES=cmake it will look for CMakeLists.txt in PATHFIX_WRKSRC. If needed, that default
filename can be changed with PATHFIX_CMAKELISTSTXT.

17.66. pear

Possible arguments: env

Adds a dependency on devel/pear. It will setup default behavior for software using the PHP
Extension and Application Repository. Using the env arguments only sets up the PEAR environment
variables. See PEAR Modules for more information.

17.67. perlb

Possible arguments: (none)
Depends on Perl. The configuration is done using USE_PERL5.
USE_PERL5 can contain the phases in which to use Perl, can be extract, patch, build, run, or test.

USE_PERL5 can also contain configure, modbuild, or modbuildtiny when Makefile.PL, Build.PL, or
Module::Build::Tiny’s flavor of Build.PL is required.

USE_PERL5 defaults to build run. When using configure, modbuild, or modbuildtiny, build and run are
implied.

See Using Perl for more information.

17.68. pgsql

Possible arguments: (none), X.Y, X. Y+, X.Y-, X.Y-Z.A

Provide support for PostgreSQL. Port maintainer can set version required. Minimum and
maximum versions or a range can be specified; for example, 9.0-, 8.4+, 8.4-9.2.

By default, the added dependency will be the client, but if the port requires additional components,
this can be done using WANT_PGSQL=component[:target]; for example, WANT_PGSQL=server:configure

283

https://cgit.freebsd.org/ports/tree/devel/pear/pkg-descr
../special/index.html#php-pear
../special/index.html#using-perl

pltcl plperl. The available components are:

» client

* contrib
* docs

* pgtcl

* plperl

* plpython
* pltcl

* server

17.69. php

Possible arguments: (none), phpize, ext, zend, build, cli, cgi, mod, web, embed, pecl, flavors, noflavors
Provide support for PHP. Add a runtime dependency on the default PHP version, lang/php56.

phpize

Use to build a PHP extension. Enables flavors.

ext

Use to build, install and register a PHP extension. Enables flavors.

zend

Use to build, install and register a Zend extension. Enables flavors.

build
Set PHP also as a build-time dependency.

cli
Needs the CLI version of PHP.

cgi
Needs the CGI version of PHP.

mod
Needs the Apache module for PHP.

web

Needs the Apache module or the CGI version of PHP.

embed

Needs the embedded library version of PHP.

pecl

Provide defaults for fetching PHP extensions from the PECL repository. Enables flavors.

284

https://cgit.freebsd.org/ports/tree/lang/php56/pkg-descr

flavors

Enable automatic PHP flavors generation. Flavors will be generated for all PHP versions, except
the ones present in IGNORE_WITH_PHP.

noflavors

Disable automatic PHP flavors generation. Must only be used with extensions provided by PHP
itself.

Variables are used to specify which PHP modules are required, as well as which version of PHP are
supported.

USE_PHP

The list of required PHP extensions at run-time. Add :build to the extension name to add a build-
time dependency. Example: pcre xml:build gettext

IGNORE_WITH_PHP

The port does not work with PHP of the given version. For possible values look at the content of
_ALL_PHP_VERSIONS in MKk/Uses/php.mk.

When building a PHP or Zend extension with :ext or :zend, these variables can be set:

PHP_MODNAME
The name of the PHP or Zend extension. Default value is ${PORTNAME}.

PHP_HEADER_DIRS

A list of subdirectories from which to install header files. The framework will always install the
header files that are present in the same directory as the extension.

PHP_MOD_PRIO

The priority at which to load the extension. It is a number between 00 and 99.

For extensions that do not depend on any extension, the priority is automatically set to 20, for
extensions that depend on another extension, the priority is automatically set to 30. Some
extensions may need to be loaded before every other extension, for example www/php56-
opcache. Some may need to be loaded after an extension with a priority of 30. In that case, add
PHP_MOD_PRIO=XX in the port’s Makefile. For example:

USES= php:ext
USE_PHP= wddx
PHP_MOD_PRIO= 40

These variables are available to use in PKGNAMEPREFIX or PKGNAMESUFFIX:

PHP_PKGNAMEPREFIX

Contains php_XY_- where XY is the current flavor’s PHP version. Use with PHP extensions and
modules.

285

../flavors/index.html#flavors-auto-php
https://cgit.freebsd.org/ports/tree/www/php56-opcache/pkg-descr
https://cgit.freebsd.org/ports/tree/www/php56-opcache/pkg-descr

PHP_PKGNAMESUFFIX

Contains -php_XY_where XY is the current flavor’s PHP version. Use with PHP applications.

PECL_PKGNAMEPREFIX

Contains php_XY_-pecl- where XY is the current flavor’s PHP version. Use with PECL modules.

With flavors, all PHP extensions, PECL extensions, PEAR modules must have a
o different package name, so they must all use one of these three variables in their
PKGNAMEPREFIX or PKGNAMESUFFIX.

17.70. pkgconfig

Possible arguments: (none), build (default), run, both

Uses devel/pkgconf. With no arguments or with the build argument, it implies pkg-config as a build-
time dependency. run implies a run-time dependency and both implies both run-time and build-time
dependencies.

17.71. pure

Possible arguments: (none), ffi

Uses lang/pure. Largely used for building related pure ports. With the ffi argument, it implies
devel/pure-ffi as a run-time dependency.

17.72. pyqt

Possible arguments: (none), 4, 5

Uses PyQt. If the port is part of PyQT itself, set PYQT_DIST. Use USE_PYQT to select the components the
port needs. The available components are:

* core

* dbus

» dbussupport

* demo

* designer

* designerplugin

* doc

* gui

* multimedia

* network

* opengl

286

https://cgit.freebsd.org/ports/tree/devel/pkgconf/pkg-descr
https://cgit.freebsd.org/ports/tree/lang/pure/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/pure-ffi/pkg-descr

* gscintilla?
* sip

* sql

* svg

* test

* webkit

o xml

* xmlpatterns
These components are only available with PyQT4:

* assistant

* declarative
* help

* phonon

e script

* scripttools
These components are only available with PyQTS5:

* multimediawidgets
e printsupport

o qml

* serialport

* webkitwidgets

* widgets

The default dependency for each component is build- and run-time, to select only build or run, add
_build or _run to the component name. For example:

USES= pyqt
USE_PYQT= core doc_build designer_run

17.73. python

Possible arguments: (none), X. Y, X.Y+, -X.Y, X.Y-Z.A, patch, build, run, test

Uses Python. A supported version or version range can be specified. If Python is only needed at
build time, run time or for the tests, it can be set as a build, run or test dependency with build, run,
or test. If Python is also needed during the patch phase, use patch. See Using Python for more
information.

287

../special/index.html#using-python

PYTHON_NO_DEPENDS=yes can be used when the variables exported by the framework are needed but a
dependency on Python is not. It can happen when using with USES=shebangfix, and the goal is only
to fix the shebangs but not add a dependency on Python.

17.74. qmail

Possible arguments: (none), build, run, both, vars

Uses mail/gmail. With the build argument, it implies gmail as a build-time dependency. run implies a
run-time dependency. Using no argument or the both argument implies both run-time and build-
time dependencies. vars will only set QMAIL variables for the port to use.

17.75. gmake

Possible arguments: (none), norecursive, outsource, no_env, no_configure

Uses QMake for configuring. For more information see Using qmake.

17.76. qt

Possible arguments: 5, no_env

Add dependency on Qt components. no_env is passed directly to USES= gmake. See Using Qt for more
information.

17.77. qt-dist

Possible arguments: (none) or 5 and (none) or one of 3d, activeqt, androidextras, base, canvas3d,
charts, connectivity, datavis3d, declarative, doc, gamepad, graphicaleffects, imageformats, location,
macextras, multimedia, networkauth, purchasing, quickcontrols2, quickcontrols, remoteobjects, script,
scxml, sensors, serialbus, serialport, speech, svg, tools, translations, virtualkeyboard, wayland,
webchannel, webengine, websockets, webview, winextras, x11extras, xmlpatterns

Provides support for building Qt 5 components. It takes care of setting up the appropriate
configuration environment for the port to build.

{5 117. Building Qt 5 Components

The port is Qt 5’s networkauth component, which is part of the networkauth distribution file.

PORTNAME= networkauth
DISTVERSION= ${QT5_VERSION}

USES= qt-dist:5
If PORTNAME does not match the component name, it can be passed as an argument to qt-dist.

288

https://cgit.freebsd.org/ports/tree/mail/qmail/pkg-descr
../special/index.html#using-qmake
../special/index.html#using-qmake
../special/index.html#using-qt

{5l 118. Building Qt 5 Components with Different Names

The port is Qt 5’s gui component, which is part of the base distribution file.

PORTNAME= qui
DISTVERSION= ${QT5_VERSION}

USES= qt-dist:5,base

17.78. readline

Possible arguments: (none), port

Uses readline as a library dependency, and sets CPPFLAGS and LDFLAGS as necessary. If the port
argument is used or if readline is not present in the base system, add a dependency on
devel/readline

17.79. samba

Possible arguments: build, env, 1ib, run

Handle dependency on Samba. env will not add any dependency and only set up the variables. build
and run will add build-time and run-time dependency on smbd. 1ib will add a dependency on
libsmbclient.so. The variables that are exported are:

SAMBAPORT
The origin of the default Samba port.

SAMBAINCLUDES

The location of the Samba header files.

SAMBALIBS

The directory where the Samba shared libraries are available.

17.80. scons

Possible arguments: (none)

Provide support for the use of devel/scons. See Using scons for more information.

17.81. shared-mime-info

Possible arguments: (none)

Uses update-mime-database from misc/shared-mime-info. This uses will automatically add a post-
install step in such a way that the port itself still can specify there own post-install step if needed. It

289

https://cgit.freebsd.org/ports/tree/devel/readline/pkg-descr
https://cgit.freebsd.org/ports/tree/devel/scons/pkg-descr
../special/index.html#using-scons
../special/index.html#using-scons
https://cgit.freebsd.org/ports/tree/misc/shared-mime-info/pkg-descr

also add an @shared-mime-info entry to the plist.

17.82. shebangfix

Possible arguments: (none)

A lot of software uses incorrect locations for script interpreters, most notably /usr/bin/perl and
/bin/bash. The shebangfix macro fixes shebang lines in scripts listed in SHEBANG_REGEX, SHEBANG_GLOB,
or SHEBANG_FILES.

SHEBANG_REGEX

Contains one extended regular expressions, and is used with the -iregex argument of find(1). See
USES=shebangfix with SHEBANG_REGEX.

SHEBANG_GLOB

Contains a list of patterns used with the -name argument of find(1). See USES=shebangfix with
SHEBANG_GLOB.

SHEBANG_FILES

Contains a list of files or sh(1) globs. The shebangfix macro is run from ${WRKSRC}, so
SHEBANG_FILES can contain paths that are relative to ${WRKSRC}. It can also deal with absolute
paths if files outside of ${WRKSRC} require patching. See USES=shebangfix with SHEBANG_FILES.

Currently Bash, Java, Ksh, Lua, Perl, PHP, Python, Ruby, Tcl, and Tk are supported by default.
There are three configuration variables:

SHEBANG_LANG

The list of supported interpreters.

_interp__CMD
The path to the command interpreter on FreeBSD. The default value is ${LOCALBASE}/bin/interp.

_interp__OLD_CMD

The list of wrong invocations of interpreters. These are typically obsolete paths, or paths used on
other operating systems that are incorrect on FreeBSD. They will be replaced by the correct path
in _interp__CMD.

0 These will always be part of interp__OLD_CMD: "/usr/bin/env _interp"
/bin/interp /usr/bin/interp /usr/local/bin/interp.

_interp__OLD_CMD contain multiple values. Any entry with spaces must be
O quoted. See Specifying all the Paths When Adding an Interpreter to
USES=shebangfix.

290

../plist/index.html#plist-keywords-shared-mime-info
https://www.freebsd.org/cgi/man.cgi?query=find&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=find&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sh&sektion=1&format=html

The fixing of shebangs is done during the patch phase. If scripts are created with
incorrect shebangs during the build phase, the build process (for example, the

example, with CONFIGURE_ENV, CONFIGURE_ARGS, MAKE_ENV, or MAKE_ARGS) to generate

o configure script, or the Makefiles) must be patched or given the right path (for

the right shebangs.

Correct paths for supported interpreters are available in _interp__CMD.

O When used with USES=python, and the aim is only to fix the shebangs but a

- dependency on Python itself is not wanted, use PYTHON_NO_DEPENDS=yes.

{5 119. Adding Another Interpreter to USES=shebangfix

To add another interpreter, set SHEBANG_LANG. For example:

SHEBANG_LANG= 1lua

{5 120. Specifying all the Paths When Adding an Interpreter to USES=shebangfix

If it was not already defined, and there were no default values for _interpOLD_CMD and

_interpCMD the Ksh entry could be defined as:

SHEBANG_LANG= ksh
ksh_OLD_CMD= "/usr/bin/env ksh" /bin/ksh /usr/bin/ksh
ksh_CMD= ${LOCALBASE}/bin/ksh

{5 121. Adding a Strange Location for an Interpreter

Some software uses strange locations for an interpreter. For example, an application might
expect Python to be located in /opt/bin/python2.7. The strange path to be replaced can be

declared in the port Makefile:

python_OLD_CMD= /opt/bin/python2.7

291

{5 122. USES=shebangfix with SHEBANG_REGEX

To fix all the files in ${WRKSRC}/scripts ending in .pl, .sh, or .cgi do:

USES= shebangfix
SHEBANG_REGEX= ./scripts/.*\.(sh|pl|cgi)

SHEBANG_REGEX is used by running find -E, which uses modern regular
o expressions also known as extended regular expressions. See re_format(7) for
more information.

{5l 123. USES=shebangfix with SHEBANG_GLOB

To fix all the files in ${WRKSRC} ending in .pl or .sh, do:

USES= shebangfix
SHEBANG_GLOB= *.sh *.pl

{5l 124. USES=shebangfix with SHEBANG_FILES

To fix the files script/foobar.pl and script/*sh in ${WRKSRC}, do:

USES= shebangfix
SHEBANG_FILES= scripts/foobar.pl scripts/*.sh

17.83. sqlite

Possible arguments: (none), 2, 3

Add a dependency on SQLite. The default version used is 3, but version 2 is also possible using the
:2 modifier.

17.84. ssl

Possible arguments: (none), build, run

Provide support for OpenSSL. A build- or run-time only dependency can be specified using build or
run. These variables are available for the port’s use, they are also added to MAKE_ENV:

OPENSSLBASE
Path to the OpenSSL installation base.

292

https://www.freebsd.org/cgi/man.cgi?query=re_format&sektion=7&format=html

OPENSSLDIR
Path to OpenSSL’s configuration files.

OPENSSLLIB
Path to the OpenSSL libraries.

OPENSSLINC
Path to the OpenSSL includes.

OPENSSLRPATH
If defined, the path the linker needs to use to find the OpenSSL libraries.

If a port does not build with an OpenSSL flavor, set the BROKEN_SSL variable, and
possibly the BROKEN_SSL_REASON__flavor_:

Q

BROKEN_SSL= 1ibressl
BROKEN_SSL_REASON_libressl= needs features only available in OpenSSL

17.85. tar

Possible arguments: (none), Z, bz2, bzip2, 1zma, tbz, tbz2, tgz, txz, xz

Set EXTRACT_SUFX to .tar, .tar.Z, .tar.bz2, .tar.bz2, .tar.lzma, .tbz, .tbz2, .tgz, .txz or .tar.xz
respectively.

17.86. tcl

Possible arguments: version, wrapper, build, run, tea

Add a dependency on Tcl. A specific version can be requested using version. The version can be
empty, one or more exact version numbers (currently 84, 85, or 86), or a minimal version number
(currently 84+, 85+ or 86+). To only request a non version specific wrapper, use wrapper. A build- or
run-time only dependency can be specified using build or run. To build the port using the Tcl
Extension Architecture, use tea. After including bsd.port.pre.mk the port can inspect the results
using these variables:

* TCL_VER: chosen major.minor version of Tcl

* TCLSH: full path of the Tcl interpreter

o TCL_LIBDIR: path of the Tcl libraries

o TCL_INCLUDEDIR: path of the Tcl C header files

* TK_VER: chosen major.minor version of Tk

* WISH: full path of the Tk interpreter

* TK_LIBDIR: path of the Tk libraries

* TK_INCLUDEDIR: path of the Tk C header files

293

17.87. terminfo

Possible arguments: (none)

Adds @terminfo to the plist. Use when the port installs *terminfo files in ${PREFIX}/share/misc.

17.88. tk

Same as arguments for tcl

Small wrapper when using both Tcl and Tk. The same variables are returned as when using Tcl.

17.89. uidfix

Possible arguments: (none)

Changes some default behavior (mostly variables) of the build system to allow installing this port as
a normal user. Try this in the port before using USES=fakeroot or patching.

17.90. uniquefiles

Possible arguments: (none), dirs

Make files or directories 'unique’, by adding a prefix or suffix. If the dirs argument is used, the port
needs a prefix (and only a prefix) based on UNIQUE_PREFIX for standard directories DOCSDIR,
EXAMPLESDIR, DATADIR, WWWDIR, ETCDIR. These variables are available for ports:

UNIQUE_PREFIX: The prefix to be used for directories and files. Default: ${PKGNAMEPREFIX}.

UNIQUE_PREFIX_FILES: A list of files that need to be prefixed. Default: empty.

UNIQUE _SUFFIX: The suffix to be used for files. Default: ${PKGNAMESUFFIX}.

UNIQUE_SUFFIX_FILES: A list of files that need to be suffixed. Default: empty.

17.91. varnish

Possible arguments: 4, 6

Handle dependencies on Varnish Cache. 4 will add a dependency on www/varnish4. 6 will add a
dependency on www/varnishé.

17.92. webplugin

Possible arguments: (none), ARGS

Automatically create and remove symbolic links for each application that supports the webplugin
framework. ARGS can be one of:

 gecko: support plug-ins based on Gecko

294

../plist/index.html#plist-keywords-terminfo
https://cgit.freebsd.org/ports/tree/www/varnish4/pkg-descr
https://cgit.freebsd.org/ports/tree/www/varnish6/pkg-descr

* native: support plug-ins for Gecko, Opera, and WebKit-GTK

* linux: support Linux plug-ins

all (default, implicit): support all plug-in types

These variables can be adjusted:

(individual entries): support only the browsers listed

* WEBPLUGIN_FILES: No default, must be set manually. The plug-in files to install.

* WEBPLUGIN_DIR: The directory to

install

the plug-in files to, default

PREFIX/lib/browser_plugins/WEBPLUGIN_NAME. Set this if the port installs plug-in files outside
of the default directory to prevent broken symbolic links.

» WEBPLUGIN_NAME: The final directory to install the plug-in files into, default PKGBASE.

17.93. xfce

Possible arguments: (none), gtk?2

Provide support for Xfce related ports. See Using Xfce for details.

The gtk2 argument specifies that the port requires GTK2 support. It adds additional features
provided by some core components, for example, x11/libxfce4menu and x11-wm/xfce4-panel.

17.94. xorg

Possible arguments: (none)

Provides an easy way to depend on X.org components. The components should be listed in USE_XORG.

The available components are:

% 51. Available X.0Org Components

Name

dmx
fontenc
fontutil
ice

libfs
pciaccess
pixman

sm

x11

Xau

Xaw

Description

DMX extension library

The fontenc Library

Create an index of X font files in a directory
Inter Client Exchange library for X11
The FS library

Generic PCI access library

Low-level pixel manipulation library
Session Management library for X11
X11 library

Authentication Protocol library for X11

X Athena Widgets library

295

../special/index.html#using-xfce
https://cgit.freebsd.org/ports/tree/x11/libxfce4menu/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-wm/xfce4-panel/pkg-descr

Name

Xawb

xaw7
xbitmaps
xcb
xcomposite
Xcursor
xdamage
xdmep

xext
xfixes
xfont
xfont?2

xft

Xi
xinerama
xkbfile
Xmu

Xmuu
X0rg-macros
Xorg-server
xorgproto
Xpm
xpresent
xrandr
xrender
Xres
Xxscrnsaver

xshmfence

xt
xtrans
xtst
XV

Xvmc

296

Description
X Athena Widgets library
X Athena Widgets library

X.0Org bitmaps data

The X protocol C-language Binding (XCB) library

X Composite extension library

X client-side cursor loading library

X Damage extension library

X Display Manager Control Protocol library
X11 Extension library

X Fixes extension library

X font library

X font library

Client-sided font API for X applications
X Input extension library

X11 Xinerama library

XKB file library

X Miscellaneous Utilities libraries

X Miscellaneous Utilities libraries
X.0rg development aclocal macros
X.0rg X server and related programs
xorg protocol headers

X Pixmap library

X Present Extension library

X Resize and Rotate extension library
X Render extension library

X Resource usage library

The XScrnSaver library

Shared memory 'SyncFence' synchronization
primitive

X Toolkit library

Abstract network code for X

X Test extension

X Video Extension library

X Video Extension Motion Compensation library

Name Description
xxf86dga X DGA Extension

xxf86vm X Vidmode Extension

17.95. xorg-cat

Possible arguments: app, data, doc, driver, font, lib, proto, util, xserver and (none) or one off
autotools (default), meson

Provide support for building Xorg components. It takes care of setting up common dependencies
and an appropriate configuration environment needed. This is intended only for Xorg components.

The category has to match upstream categories.

The second argument is the build system to use. autotools is the default, but meson is also
supported.

17.96. z1ip

Possible arguments: (none), infozip

Indicates that the distribution files use the ZIP compression algorithm. For files using the InfoZip
algorithm the infozip argument must be passed to set the appropriate dependencies.

297

Chapter 18. __FreeBSD_version Values

Here is a convenient list of __FreeBSD_version values as defined in sys/param.h:

18.1. FreeBSD 14 Versions

& 52. FreeBSD 14 __FreeBSD_version Values

Value
1400000
1400001

1400002

1400003

1400004

1400005

1400006

1400007

1400008

298

Revision
a53ce3fc4938
739ecbcflc4af

2cf84258922f

d386f3a3c32f

6816800ce05c

45eabf5754ac

€96151d33509

d36d68161517

el152bbech221

Date
January 22, 2021
January 23, 2021

January 26, 2021

January 28, 2021

February 8, 2021

February 17, 2021

March 17, 2021

April 6, 2021

April 11, 2021

Release
14.0-CURRENT.

14.0-CURRENT after
adding symlink support
to lockless lookup.

14.0-CURRENT after
fixing a clang assertion
when building the
devel/onetbb port.

14.0-CURRENT after
adding various
LinuxKPI bits
conflicting with drm-
kmod.

14.0-CURRENT after
kernel interfaces for
dispatching
cryptographic
operations were
changed.

14.0-CURRENT after
changing the API of
ptrace(2) PT_GETDBREGS
/PT_SETDBREGS on arm64.

14.0-CURRENT after
adding sndstat(4)
enumeration ioctls.

14.0-CURRENT after
fixing wrong
dlpi_tls_data.

14.0-CURRENT after
changing the internal
KAPI between the krpc
and NFS modules.

https://cgit.freebsd.org/src/tree/sys/sys/param.h
https://cgit.freebsd.org/src/commit/?id=a53ce3fc4938e37d5ec89304846203d2083c61a2
https://cgit.freebsd.org/src/commit/?id=739ecbcf1c4fd22b5f6ee0bb180a67644046a3e0
https://cgit.freebsd.org/src/commit/?id=2cf84258922f306a3f84866685d2f5346f67db58
https://cgit.freebsd.org/ports/tree/devel/onetbb/pkg-descr
https://cgit.freebsd.org/src/commit/?id=d386f3a3c32f0396aa7995349dd65d6c59711393
https://cgit.freebsd.org/src/commit/?id=68f6800ce05c386ff045b4416d8595d09c4d8fdd
https://cgit.freebsd.org/src/commit/?id=45eabf5754ac1d291bd677fdf29f59ce4bbc2c8f
https://www.freebsd.org/cgi/man.cgi?query=ptrace&sektion=2&format=html
https://cgit.freebsd.org/src/commit/?id=c96151d33509655efb7fb26768cb56a041c176f1
https://www.freebsd.org/cgi/man.cgi?query=sndstat&sektion=4&format=html
https://cgit.freebsd.org/src/commit/?id=d36d6816151705907393889d661cbfd25c630ca8
https://cgit.freebsd.org/src/commit/?id=e152bbecb221a592e7dbcabe3d1170a60f0d0dfe

Value

1400009

1400010

1400015

1400016

1400017

1400018

1400019

1400020

1400021

Revision

9ca874cf740e

a3a02acdel100

d72cd275187c

21e3c1fbe246

beb817edfe22

a4b07a270115

37d64dcdfa51

8ala42b2a7a4

b47f461c8e67

Date
April 20, 2021

April 21, 2021

May 25, 2021

May 25, 2021

May 25, 2021

May 30, 2021

Jun 7, 2021

Jun 9, 2021

Jun 10, 2021

Release

14.0-CURRENT after
adding TCP LRO
support for VLAN and
VXLAN.

14.0-CURRENT after
changing the sndstat(4)
ioctls nvlist schema and
definitions.

14.0-CURRENT after
adding more LinuxKPI
changes needing
adjustments to drm-
kmod.

14.0-CURRENT after
removing support for
KTLS software
backends.

14.0-CURRENT after

adding
crypto_cursor_segment(

).

14.0-CURRENT after
allowing the
VFS_QUOTACTL(9)
implementation to
indicate busy state
changes.

14.0-CURRENT after
including pr_err_once()
in the LinuxKPI
printk.h.

14.0-CURRENT after
adding macros for
might_lock_nested()

and
lockdep_(re/un/)pin_lo

ck() to the LinuxKPI.

14.0-CURRENT after
adding a
list_for_each_entry_lo
ckless() macro to the
LinuxKPI.

299

https://cgit.freebsd.org/src/commit/?id=9ca874cf740ee68c5742df8b5f9e20910085c011
https://cgit.freebsd.org/src/commit/?id=a3a02acde1009f03dc78e979e051acee9f9247c2
https://www.freebsd.org/cgi/man.cgi?query=sndstat&sektion=4&format=html
https://cgit.freebsd.org/src/commit/?id=d72cd275187c6399caf0ca4125292dc7e55fa478
https://cgit.freebsd.org/src/commit/?id=21e3c1fbe2460f144f6d4dfd61c3346b2de59667
https://cgit.freebsd.org/src/commit/?id=beb817edfe22cdea91e19a60c42caabd9404da48
https://cgit.freebsd.org/src/commit/?id=a4b07a2701f568c2c0f0c0426091f1489244a92d
https://www.freebsd.org/cgi/man.cgi?query=VFS_QUOTACTL&sektion=9&format=html
https://cgit.freebsd.org/src/commit/?id=37d64dcdfa519157aff9711f1f226ad7bd778f46
https://cgit.freebsd.org/src/commit/?id=8a1a42b2a7a428fb97fda9f19fd0d67a4eec7535
https://cgit.freebsd.org/src/commit/?id=b47f461c8e67253fdb394968428b760e880baa08

Value

1400022

1400023

1400024

1400025

1400026

1400027

1400028

1400029

1400030

300

Revision

40cc9a3a6b81

d409305fa383

41dfd8bd6466

5faleb1cd927

fad3f322efb5

cc55ee8009a5

792b602a337d

245ec7651e42

95941b963606

Date
Jun 11, 2021

Jun 13, 2021

Jun 18, 2021

Jul 5, 2021

Jul 16, 2021

Jul 28, 2021

Jul 31, 2021

Aug 5, 2021

Aug 12, 2021

Release

14.0-CURRENT after
commit ela907a25cfa
changed the internal
KAPI between the krpc
and nfsserver modules.

14.0-CURRENT after
upgrading llvm, clang,
compiler-rt, libc++,
libunwind, 11d, lldb and
openmp to llvmorg-
12.0.0-0-gd28af7c654d8,
a.k.a. 12.0.0 release.

14.0-CURRENT after
various additions to
LinuxKPI.

14.0-CURRENT after
various additions to
LinuxKPI.

14.0-CURRENT after
changing the internal
KAPI between the
nfscommon and nfsd
modules.

14.0-CURRENT after
adding out-of-line LSE
atomics helpers to
libcompiler_rt.a on
aarch64.

14.0-CURRENT after
making FPU sections
thread-safe in the
LinuxKPI.

14.0-CURRENT after
adding fspacectl(2),
vn_deallocate(9) and
VOP_DEALLOCATE(9).

14.0-CURRENT after
VOP_DEALLOCATE(9)
parameter changes and
addition of fspacectl(2)
support to POSIX
shared memory.

https://cgit.freebsd.org/src/commit/?id=40cc9a3a6b81a65a03712dfd93bbed48552a97ad
https://cgit.freebsd.org/src/commit/?id=e1a907a25cfa422c0d1acaf9f91352ada04f4bca
https://cgit.freebsd.org/src/commit/?id=d409305fa3838fb39b38c26fc085fb729b8766d5
https://cgit.freebsd.org/src/commit/?id=41dfd8bd6466fd39957dee2614d88c81cdf420a7
https://cgit.freebsd.org/src/commit/?id=5fa1eb1cd927219070b5753b64114a9240d76bf8
https://cgit.freebsd.org/src/commit/?id=fad3f322efb53d4924fdda34f9f23f881659c269
https://cgit.freebsd.org/src/commit/?id=cc55ee8009a550810d38777fd6ace9abf3a2f6b4
https://cgit.freebsd.org/src/commit/?id=792b602a337ddc5efaa5e5326d9433fe3da7f303
https://cgit.freebsd.org/src/commit/?id=245ec7651e4221043d1032fb3f82f335dc65fc7f
https://www.freebsd.org/cgi/man.cgi?query=fspacectl&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi?query=vn_deallocate&sektion=9&format=html
https://www.freebsd.org/cgi/man.cgi?query=VOP_DEALLOCATE&sektion=9&format=html
https://cgit.freebsd.org/src/commit/?id=95941b963606f6e03282cd6f866f3166dcedfa5b
https://www.freebsd.org/cgi/man.cgi?query=VOP_DEALLOCATE&sektion=9&format=html
https://www.freebsd.org/cgi/man.cgi?query=fspacectl&sektion=2&format=html

Value

1400031

1400032

1400033

1400034

1400035

1400036

1400037

Revision

1a4c5061fc5b

76321d2d432e

c751d067c166

c751d067c166

16fleelle657

ac847dbf7368

2b68eb8e1dbb

Date
Aug 24, 2021

Aug 25, 2021

Sep 7, 2021

Sep 29, 2021

Oct 4, 2021

Oct 6, 2021

Oct 11, 2021

Release

14.0-CURRENT after
changing fspacectl(2),
vn_deallocate(9) and
VOP_DEALLOCATE(9)
to update rmsr.r_offset
to a meaningful value.

14.0-CURRENT after
changing fspacectl(2),
vn_deallocate(9) and
VOP_DEALLOCATE(9)
to make calculating the
number of bytes zeroed
easier.

14.0-CURRENT after
moving the socket
buffer locks into the
containing socket and
renaming sbh(un)lock to
SOCK_IO_RECV_LOCK,
SOCK_IO_RECV_UNLOC
K
SOCK_IO_SEND_LOCK,
and
SOCK_IO_SEND_UNLOC
K.

14.0-CURRENT after
LinuxKPI changes.

14.0-CURRENT after
splitting libtinfow from
libncurses.

14.0-CURRENT after
extending the AES-CCM
and Chacha20-Poly1305
ciphers in OCF to
support multiple nonce
lengths.

14.0-CURRENT after
removal of thread
argument from
VOP_STAT(9) and
fo_stat.

301

https://cgit.freebsd.org/src/commit/?id=1a4c5061fc5ba8f2eee41456a6873547915f268a
https://www.freebsd.org/cgi/man.cgi?query=fspacectl&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi?query=vn_deallocate&sektion=9&format=html
https://www.freebsd.org/cgi/man.cgi?query=VOP_DEALLOCATE&sektion=9&format=html
https://cgit.freebsd.org/src/commit/?id=76321d2d432ed270d93b282e54e59b708c0cf3b4
https://www.freebsd.org/cgi/man.cgi?query=fspacectl&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi?query=vn_deallocate&sektion=9&format=html
https://www.freebsd.org/cgi/man.cgi?query=VOP_DEALLOCATE&sektion=9&format=html
https://cgit.freebsd.org/src/commit/?id=c751d067c166db71ce8bf3a323c62ac3428bd32a
https://cgit.freebsd.org/src/commit/?id=c751d067c166db71ce8bf3a323c62ac3428bd32a
https://cgit.freebsd.org/src/commit/?id=16f1ee11e6574d7f8d8a9dc6ebc9be3036ff9fd0
https://cgit.freebsd.org/src/commit/?id=ac847dbf73685a5df9f70bbcdefa9fdeb559071d
https://cgit.freebsd.org/src/commit/?id=2b68eb8e1dbbdaf6a0df1c83b26f5403ca52d4c3
https://www.freebsd.org/cgi/man.cgi?query=VOP_STAT&sektion=9&format=html

Value

1400038

1400039

1400040

1400041

1400042

18.2. FreeBSD 13 Versions

R 53. FreeBSD 13 __FreeBSD_version Values

Value
1300000
1300001

1300002

1300003

1300004

302

Revision

0d6516b45346

bd49c454ca62

f38bef2ced17

0c276dee030b

20aa359773be

Revision
339436
339730

339765

340055

340841

Date
Oct 17, 2021

Oct 19, 2021

Oct 30, 2021

Nov 6, 2021

Nov 13, 2021

Date
October 19, 2018
October 25, 2018

October 25, 2018

November 2, 2018

November 23, 2018

Release

14.0-CURRENT after
LinuxKPI gained
support of lazy BAR
allocation.

14.0-CURRENT after
page allocator changes.

14.0-CURRENT after
libdialog shared library
version number bump.

14.0-CURRENT after
changing the
arguments for
VOP_ALLOCATE(9).

14.0-CURRENT after
upgrading llvm, clang,
compiler-rt, libc++,
libunwind, 11d, 1lldb and
openmp to llvmorg-
13.0.0-0-
gd7b669b3a303, a.k.a.
13.0.0 release.

Release
13.0-CURRENT.

13.0-CURRENT after
bumping OpenSSL
shared library version
numbers.

13.0-CURRENT after
restoration of
sys/joystick.h.

13.0-CURRENT after
vop_symlink API
change (a_target is now
const.)

13.0-CURRENT after
enabling crtbegin and
crtend code.

https://cgit.freebsd.org/src/commit/?id=0d6516b453469ce1d92ec903c4c4df9ee08be0f9
https://cgit.freebsd.org/src/commit/?id=bd49c454ca62170506a98959c1acab7ad50c3276
https://cgit.freebsd.org/src/commit/?id=f38bef2ce417d6270f32b4ed17cec84bfd95d548
https://cgit.freebsd.org/src/commit/?id=0c276dee030b241e12e1ceb1b2ab619004f08ce1
https://www.freebsd.org/cgi/man.cgi?query=VOP_ALLOCATE&sektion=9&format=html
https://cgit.freebsd.org/src/commit/?id=20aa359773befc8182f6b5dcb5aad7390cab6c26
https://svnweb.freebsd.org/changeset/base/339436
https://svnweb.freebsd.org/changeset/base/339730
https://svnweb.freebsd.org/changeset/base/339765
https://svnweb.freebsd.org/changeset/base/340055
https://svnweb.freebsd.org/changeset/base/340841

Value

1300005

1300006

1300007

1300008

1300009

1300010

1300011

1300012

1300013

Revision

341836

342398

342629

342772

343213

343485

344041

344062

344300

Date
December 11, 2018

December 24, 2018

December 30, 2018

January 4, 2019

January 20, 2019

January 27, 2019

February 12, 2019

February 12, 2019

February 19, 2019

Release

13.0-CURRENT after
enabling UFS inode
checksums.

13.0-CURRENT after
fixing sys/random.h
include to be usable
from C++.

13.0-CURRENT after
changing the size of
struct linux_cdev on
32-bit platforms.

13.0-CURRENT after

adding
kern.smp.threads_per_c

ore and kern.smp.cores
sysctls.

13.0-CURRENT after
struct ieee80211vap
structure change to
resolve ioctl/detach
race for ieee80211com
structure.

13.0-CURRENT after
increasing SPECNAMELEN
from 63 to MAXNAMELEN
(255).

13.0-CURRENT after
renameat(2) has been
corrected to work with
kernels built with the
CAPABILITIES option.

13.0-CURRENT after
taskqgroup_attach()

and
taskqgroup_attach_cpu(

) take a device_t and a
struct resource pointer
as arguments for
denoting device
interrupts.

13.0-CURRENT after the
removal of drm and
drm2.

303

https://svnweb.freebsd.org/changeset/base/341836
https://svnweb.freebsd.org/changeset/base/342398
https://svnweb.freebsd.org/changeset/base/342629
https://svnweb.freebsd.org/changeset/base/342772
https://svnweb.freebsd.org/changeset/base/343213
https://svnweb.freebsd.org/changeset/base/343485
https://svnweb.freebsd.org/changeset/base/344041
https://www.freebsd.org/cgi/man.cgi?query=renameat&sektion=2&format=html
https://svnweb.freebsd.org/changeset/base/344062
https://svnweb.freebsd.org/changeset/base/344300

Value

1300014

1300015

1300016

1300017

1300018

1300019

1300020

1300021

304

Revision

344779

345196

345236

345305

346012

346282

346358

346645

Date
March 4, 2019

March 15, 2019

March 16, 2019

March 19, 2019

March 16, 2019

April 16, 2019

April 18, 2019

April 24, 2019

Release

13.0-CURRENT after
upgrading clang, llvim,
11d, ldb, compiler-rt
and libc++ to 8.0.0 rc3.

13.0-CURRENT after
deanonymizing thread
and proc state enums,
so userland
applications can use
them without
redefining the value
names.

13.0-CURRENT after
enabling LLVM
OpenMP 8.0.0 rc5 on
amd64 by default.

13.0-CURRENT after
exposing the Rx mbuf
buffer size to drivers in
iflib.

13.0-CURRENT after
introduction of

funlinkat syscall in
345982.

13.0-CURRENT after
addition of
is_random_seeded(9) to
random(4).

13.0-CURRENT after
restoring random(4)
availability tradeoff
prior to 346250 and
adding new tunables
and diagnostic sysctls
for programmatically
discovering early
seeding problems after
boot.

13.0-CURRENT after
LinuxKPI uses
bus_dma(9) to be
compatible with an
IOMMU.

https://svnweb.freebsd.org/changeset/base/344779
https://svnweb.freebsd.org/changeset/base/345196
https://svnweb.freebsd.org/changeset/base/345236
https://svnweb.freebsd.org/changeset/base/345305
https://svnweb.freebsd.org/changeset/base/346012
https://svnweb.freebsd.org/changeset/base/345982
https://svnweb.freebsd.org/changeset/base/346282
https://www.freebsd.org/cgi/man.cgi?query=is_random_seeded&sektion=9&format=html
https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4&format=html
https://svnweb.freebsd.org/changeset/base/346358
https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4&format=html
https://svnweb.freebsd.org/changeset/base/346250
https://svnweb.freebsd.org/changeset/base/346645
https://www.freebsd.org/cgi/man.cgi?query=bus_dma&sektion=9&format=html

Value

1300022

1300023

1300024

1300025

1300026

1300027

1300028

1300029

Revision

347089

347192

347325

347532

347596

347601

347925

347984

Date
May 4, 2019

May 6, 2019

May 8, 2019

May 13, 2019

May 14, 2019

May 14, 2019

May 17, 2019

May 20, 2019

Release

13.0-CURRENT after
fixing regression issue
after 346645 in the
LinuxKPI.

13.0-CURRENT after
list-ifying kernel dump
device configuration.

13.0-CURRENT after
bumping the Mellanox
driver version numbers
(mIx4en(4); mlx5en(4)).

13.0-CURRENT after
renaming vm.max_wired
to vm.max_user_wired
and changing its type.

13.0-CURRENT after
adding context member
to ww_mutex in
LinuxKPI.

13.0-CURRENT after
adding prepare to
pm_ops in LinuxKPI.

13.0-CURRENT after
removal of bm, cs, de,
ed, ep, ex, fe, pcn, sf, sn,
tl, tx, txp, vX, wh, and
xe drivers.

13.0-CURRENT after
removing some header
pollution due to
sys/eventhandler.h.
Affected files may now
need to explicitly
include one or more of
sys/eventhandler.h,
sys/ktr.h, sys/lock.h, or
sys/mutex.h, when the
missing header may
have been included
implicitly prior to
1300029.

305

https://svnweb.freebsd.org/changeset/base/347089
https://svnweb.freebsd.org/changeset/base/346645
https://svnweb.freebsd.org/changeset/base/347192
https://svnweb.freebsd.org/changeset/base/347325
https://www.freebsd.org/cgi/man.cgi?query=mlx4en&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=mlx5en&sektion=4&format=html
https://svnweb.freebsd.org/changeset/base/347532
https://svnweb.freebsd.org/changeset/base/347596
https://svnweb.freebsd.org/changeset/base/347601
https://svnweb.freebsd.org/changeset/base/347925
https://svnweb.freebsd.org/changeset/base/347984

Value

1300030

1300031

1300032

1300033

1300034

1300035

306

Revision

348350

348808

349151

349277

349352

349846

Date
May 29, 2019

June 8, 2019

June 17, 2019

June 21, 2019

June 24, 2019

July 8, 2019

Release

13.0-CURRENT after
adding relocation
support to libdwarf on
powerpc64 to fix
handling of DWARF
information on
unlinked objects.
Original commit in
348347.

13.0-CURRENT after
adding dpcpu and vnet
section fixes to 1386
kernel modules to
avoid panics in certain
conditions. 1386 kernel
modules need to be
recompiled with the
linker script magic in
place or they will
refuse to load.

13.0-CURRENT after
separating kernel
cre32()
implementation to its
own header
(gsb_crc32.h) and
renaming the source to
gsb_crc32.c.

13.0-CURRENT after
additions to LinuxKPI’s
rcu list.

13.0-CURRENT after
NAND and NANDFS
removal.

13.0-CURRENT after
merging the vi_page
hold and wire
mechanisms.

https://svnweb.freebsd.org/changeset/base/348350
https://svnweb.freebsd.org/changeset/base/348347
https://svnweb.freebsd.org/changeset/base/348808
https://svnweb.freebsd.org/changeset/base/349151
https://svnweb.freebsd.org/changeset/base/349277
https://svnweb.freebsd.org/changeset/base/349352
https://svnweb.freebsd.org/changeset/base/349846

Value Revision Date Release

1300036 349972 July 13, 2019 13.0-CURRENT after
adding
arm_drain_writebuf()
and arm_sync_icache()
for compatibility with
NetBSD and OpenBSD.

1300037 350307 July 24, 2019 13.0-CURRENT after
removal of
libcap_random(3).

1300038 350437 July 30, 2019 13.0-CURRENT after
removal of gzip’ed
a.out support.

1300039 350665 August 7, 2019 13.0-CURRENT after
merge of fusefs from
projects/fuse2.

1300040 351140 August 16, 2019 13.0-CURRENT after
deletion of sys/dir.h

which has been
deprecated since 1997.

(not changed) 351423 August 23, 2019 13.0-CURRENT after
changing most
arguments to ping6(8).

1300041 351480 August 25, 2019 13.0-CURRENT after
removal of zlib 1.0.4
after the completion of
kernel zlib unification.

1300042 351522 August 27, 2019 13.0-CURRENT afte